Skip to main content

Advertisement

Log in

A multi-scale approach to identify invasion drivers and invaders’ future dynamics

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Climate, land use and disturbances are well known drivers of invasion. However, their relative influence may change across spatial scales, where climate is expected to be the main filter at broad scales; land use is expected to have more influence at intermediate scales, and disturbance, at fine ones. Understanding the underlying processes that drive invasion patterns at different spatial scales is thus crucial to be able to anticipate the future spread of invaders. Here, we quantified the relative importance of climate, land use, and disturbance on the distribution of the invasive trees Ailanthus altissima and Robinia pseudoacacia, across three nested spatial scales, namely global, country (Spain) and riverbank (three riparian riverbanks). To do so, for each species and scale, we built ensemble species distribution models. We also identified their range filling and inferred the most suitable areas in Spain for them to spread. In general, our study confirms that climate acts as an initial coarse filter of species distribution, whilst both climate and land use were important at the country scale; at the riverbank scale human-mediated disturbances gained importance. However, R. pseudoacacia and A. altissima showed differences in their degree of range filling, where A. altissima has a higher potential for range expansion in the near future. Overall, the integration of different scales into invasion studies shows a great potential to enrich our understanding of species-habitat relationships, and to help anticipate their future dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aguiar FCF, Ferreira MT (2013) Plant invasions in the rivers of the Iberian Peninsula, south-western Europe: a review. Plant Biosyst 147:1107–1119

    Article  Google Scholar 

  • Ahern RG, Landis DA, Reznicek AA, Schemske DW (2010) Spread of exotic plants in the landscape: the role of time, growth habit, and history of invasiveness. Biol Invasions 12:3157–3169

    Article  Google Scholar 

  • Albright TP, Chen H, Chen L, Guo Q (2010) The ecological niche and reciprocal prediction of the disjunct distribution of an invasive species: the example of Ailanthus altissima. Biol Invasions 12:2413–2427

    Article  Google Scholar 

  • Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47

    Article  PubMed  Google Scholar 

  • Araújo MB, Thuiller W, Williams PH, Reginster I (2005) Downscaling European species atlas distributions to a finer resolution: implications for conservation planning. Glob Ecol Biogeogr 14:17–30

    Article  Google Scholar 

  • Arino O, Pérez Ramos JJ, Kalogirou V, Bontemps S, Defourny P, Van Bogaert E (2012) Global land cover map for 2009 (GlobCover 2009), European Space Agency (ESA) and Université catholique de Louvain (UCL)

  • Barbosa FG, Schneck F, Melo AS (2012) Use of ecological niche models to predict the distribution of invasive species: a scientometric analysis. Braz J Biol 72:821–829

    Article  CAS  PubMed  Google Scholar 

  • Beaumont LJ, Gallagher RV, Thuiller W, Downey PO, Leishman MR, Hughes L (2009) Different climatic envelopes among invasive populations may lead to underestimations of current and future biological invasions. Divers Distrib 15:409–420

    Article  Google Scholar 

  • Benito-Garzón M, Alía R, Robson TM, Zavala MA (2011) Intra-specific variability and plasticity influence potential tree species distributions under climate change. Glob Ecol Biogeogr 20:766–778

    Article  Google Scholar 

  • Benton TG, Vickery JA, Wilson JD (2003) Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol Evol 18:182–188

    Article  Google Scholar 

  • Boedeltje G, Bakker JP, Brinke AT, Van Groenendael JM, Soesbergen M (2004) Dispersal phenology of hydrochorous plants in relation to discharge, seed release time and buoyancy of seeds: the flood pulse concept supported. J Ecol 92:786–796

    Article  Google Scholar 

  • Bory G, Clair-Maczulajtys D (1980) Production, dissémination et polymorphisme des semences d’ Ailanthus altissima (Mill.) Swingle, Simaroubaceae. Rev Gen Bot 88:297–311

    Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45:5–32

    Article  Google Scholar 

  • Cabra-Rivas I, Alonso A, Castro-Díez P (2014) Does stream structure affect dispersal by water? A case study of the invasive tree Ailanthus altissima in Spain. Manag Biol Invasions 5:179–186

    Article  Google Scholar 

  • Campos JA, Biurrun I, García-Mijangos I, Loidi J, Herrera M (2013) Assessing the level of plant invasion: a multi-scale approach based on vegetation plots. Plant Biosyst 174:1148–1162

    Article  Google Scholar 

  • Catalán P, Vázquez-de-Aldana BR, Heras P, Fernández-Seral A, Pérez-Corona E (2013) Comparing the allelopathic potential of exotic and native plant species on understory plants: are exotic plants better armed? Anales de Biología 35:65–74

    Google Scholar 

  • Catford JA, Downes BJ (2010) Using multi-scale species distribution data to infer drivers of biological invasions in riparian wetlands. Divers Distrib 16:20–32

    Article  Google Scholar 

  • Catford JA, Vesk PA, Richardson DM, Pyšek P (2012) Quantifying levels of biological invasion: towards the objective classification of invaded and invasible ecosystems. Glob Change Biol 18:44–62

    Article  Google Scholar 

  • Chytrý M, Jarošík V, Pyšek P, Hájek O, Knollová I, Tichý L, Danihelka J (2008) Separating habitat invasibility by alien plants from the actual level of invasion. Ecology 89:1541–1553

    Article  PubMed  Google Scholar 

  • Chytrý M, Pyšek P, Wild J, Pino J, Maskell LC, Vilà M (2009) European map of alien plant invasions based on the quantitative assessment across habitats. J Appl Ecol 15:98–107

    Google Scholar 

  • Cierjacks A, Kowarik I, Joshi J, Hempel S, Ristow M, von der Lippe M, Weber E (2013) Biological Flora of the British Isles: Robinia pseudoacacia. J Ecol 101:1623–1640

    Article  Google Scholar 

  • Clark JS, Macklin E, Wood L (1998) Stages and spatial scales of recruitment limitation in southern Appalachian forests. Ecol Monogr 68:213–235

    Article  Google Scholar 

  • Colautti RI, Grigorovich IA, MacIsaac HJ (2006) Propagule pressure: a null model for biological invasions. Biol Invasions 8:1023–1037

    Article  Google Scholar 

  • Collingham YC, Wadsworth RA, Huntley B, Hulme PE (2000) Predicting the spatial distribution of non-indigenous riparian weeds: issues of spatial scale and extent. J Appl Ecol 37:13–27

    Article  Google Scholar 

  • Constán-Nava S, Bonet A, Terrones B, Albors JL (2007) Plan de actuación para el control de la especie Ailanthus altissima en el Parque Natural del Carrascal de la Font Roja, Alicante. Boletín Europarc 24:34–38

    Google Scholar 

  • Cowling RM, Lombard AT (2002) Heterogeneity speciation/extinction history and climate: explaining regional plant diversity patterns in the Cape Floristic Region. Divers Distrib 8:163–179

    Article  Google Scholar 

  • Crossman ND, Bass DA (2008) Application of common predictive habitat techniques for post-border weed risk management. Divers Distrib 14:213–224

    Article  Google Scholar 

  • DAISIE (2012) Delivering Alien Invasive Species Inventories for Europe. Invasive Alien Species Fact Sheet—Ailanthus altissima European Invasive Alien Species Gateway. http://www.europe-aliens.org/speciesFactsheet.do?speciesId=16970. Accessed 24 Mar 2014

  • Danin A (2000) The inclusion of adventive plants in the second edition of Flora Palaestina. Willdenowia 30:305–314

    Article  Google Scholar 

  • Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invisibility. J Ecol 88:528–534

    Article  Google Scholar 

  • Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JMcCM, Peterson AT, Phillips SJ, Richardson K, Scachetti-Pereira R, Shapire RE, Soberón J, Williams S, Wilz MS, Zimmermann NE (2006) Novel methods to improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • European Environment Agency (2006) Corine land cover. http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2006-raster-1. Accessed 15 Jan 2013

  • Feret PP (1985) Ailanthus: variation cultivation and frustration. J Arboric 11:361–368

    Google Scholar 

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49

    Article  Google Scholar 

  • Foxcroft LC, Richardson DM, Rouget M, MacFadyen S (2009) Patterns of alien plant distribution at multiple spatial scales in a large national park: implications for ecology, management and monitoring. Divers Distrib 15:367–378

    Article  Google Scholar 

  • Franklin J (1995) Predictive vegetation mapping: geographic modelling of biospatial patterns in relation to environmental gradients. Prog Phys Geogr 19:474–499

    Article  Google Scholar 

  • Friedman JH (1991) Multivariate adaptive regression splines. Ann Stat 19:1–141

    Article  Google Scholar 

  • Gallien L, Münkemüller T, Albert CH, Boulangeat I, Thuiller W (2010) Predicting potential distributions of invasive species: where to go from here? Divers Distrib 16:331–342

    Article  Google Scholar 

  • Gallien L, Douzet R, Pratte S, Zimmermann NE, Thuiller W (2012) Invasive species distribution model—how violating the equilibrium assumption can create new insights. Glob Ecol Biogeogr 21:1126–1136

    Article  Google Scholar 

  • Gassó N, Thuiller W, Pino J, Vilà M (2012) Potential distribution range of invasive plant species in Spain. NeoBiota 12:25–45

    Article  Google Scholar 

  • GISD (2013) Global invasive species database. http://physicsweb.org/articles/news/11/6/16/1. Accessed 16 Mar 2014

  • Graves WR, Dana MN, Joly RJ (1989) Influence of root-zone temperature on growth of Ailanthus altissima (Mill.) Swingle. J Environ Hortic 7:79–82

    Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009

    Article  Google Scholar 

  • Guisan A, Zimmermann N (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186

    Article  Google Scholar 

  • Guisan A, Lehmann A, Ferrier S, Austin M, Overton JMC, Aspinall R, Hastie T (2006) Making better biogeographical predictions of species’ distributions. J Appl Ecol 43:386–392

    Article  Google Scholar 

  • Guisan A, Graham CH, Elith J, Huettman F (2007a) Sensitivity of predictive species distribution models to change in grain size. Divers Distrib 13:332–340

    Article  Google Scholar 

  • Guisan A, Zimmermann N, Elith J, Graham C, Phillips S, Peterson T (2007b) What matters for predicting the occurrences of trees: techniques, data or, species’ characteristics? Ecol Monogr 77:615–630

    Article  Google Scholar 

  • Guisan A, Petitpierre B, Broenninmann O, Daehler C, Kueffer C (2014) Unifying niche shift studies: insights from biological invasions. TREE 29:260–269

    PubMed  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hobbs RJ, Huenneke LF (1992) Disturbance diversity and invasion: implications for conservation. Conserv Biol 6:324–337

    Article  Google Scholar 

  • Hood WG, Nayman RJ (2000) Vulnerability of riparian zones to invasion by exotic vascular plants. Plant Ecol 148:105–114

    Article  Google Scholar 

  • Huntley JC (1990) Robinia pseudoacacia L. black locust. In: Burns RM, Honkala BH (eds) Silvics of North America, vol 2. Hardwoods. USDA Forest Service, Washington DC, pp 755–761

    Google Scholar 

  • Ibáñez I, Silander JA, JrAM Wilson, LaFleur N, Tanaka N, Tsuyama I (2009) Multivariate forecasts of potential distributions of invasive plant species. Ecol Appl 19:359–375

    Article  PubMed  Google Scholar 

  • Jiménez-Valverde A, Lobo JM, Hortal J (2008) Not as good as they seem: the importance of concepts in species distribution modelling. Divers Distrib 14:885–890

    Article  Google Scholar 

  • Jiménez-Valverde A, Peterson AT, Soberón J, Overton J, Aragón P, Lobo JM (2011) Use of niche models in invasive species risk assessments. Biol Invasions 13:2785–2797

    Article  Google Scholar 

  • Kaplan H, van Niekerk A, Le Roux J, Richardson DM, Wilson JRU (2014) Incorporating risk mapping at multiple spatial scales into eradication management plans. Biol Invasions 16:691–703

    Article  Google Scholar 

  • Kaproth MA, Mcgraw JB (2008) Seed viability and dispersal of the wind-dispersed invasive Ailanthus altissima in aqueous environments. For Sci 54:490–496

    Google Scholar 

  • Kelly R, Leach K, Cameron A, Maggs CA, Reid N (2014) Combining local climate and regional landscape models to improve prediction of invasion risk. Divers Distrib 20:884–894

    Article  Google Scholar 

  • Kleinbauer I, Dullinger S, Peterseil J, Essl F (2010) Climate change might drive the invasive tree Robinia pseudoacacia into nature reserves and endangered habitats. Biol Conserv 143:382–390

    Article  Google Scholar 

  • Knapp LB, Canham CD (2000) Invasion of an old-growth forest in New York by Ailanthus altissima: sapling growth and recruitment in canopy gaps. J Torrey Bot Soc 127:307–315

    Article  Google Scholar 

  • Kostel-Hughes F, Young TP, Wehr JD (2005) Effects of leaf litter depth on the emergence and seedling growth of deciduous forest tree species in relation to seed size. J Torrey Bot Soc 132:50–61

    Article  Google Scholar 

  • Kowarik I (1983) Colonization by the tree of heaven (Ailanthus altissima) in the French mediterranean region (Bas-Languedoc) and its phytosociological characteristics. Phytocoenologia 11:389–405

    Article  Google Scholar 

  • Kowarik I (1995) Clonal growth in Ailanthus altissima on a natural site in West Virginia. J Veg Sci 6:853–856

    Article  Google Scholar 

  • Kowarik I, Säumel I (2007) Biological flora of Central Europe: Ailanthus altissima (Mill.) Swingle. Perspect Plant Ecol 8:207–237

    Article  Google Scholar 

  • Lambdon PW, Pyšek P, Basnou C, Arianoutsou M, Essl F, Jarosik V, Pergl J, Winter M, Anastasiu P, Andriopoulos P, Bazos I, Brundu G, Celesti-Grapow L, Chassot P, Delipetrou P, Josefsson M, Kark S, Klotz S, Kokkoris Y, Kuehn I, Marchante H, Perglova I, Pino J, Vilà M, Zikos A, Roy D, Hulme PE (2008) Alien Flora of Europe: species diversity, temporal trends, geographical patterns and research needs. Preslia 80:101–149

    Google Scholar 

  • Lavoie C, Jodoin Y, de Merlis AG (2007) How did common ragweed (Ambrosia artemissifolia L.) spread in Quebec? A historical analysis using herbarium records. J Biogeogr 34:1751–1761

    Article  Google Scholar 

  • Liu X, Fan Y, Long J, Wei R, Kjelgren R, Gong C, Zhao J (2013) Effects of soil water and nitrogen availability on photosynthesis and water use efficiency of Robinia pseudoacacia seedlings. J Environ Sci 25:585–595

    Article  CAS  Google Scholar 

  • Lobo JM, Jiménez-Valverde A, Real R (2008) AUC: a misleading measure of the performance of predictive distribution models. Glob Ecol Biogeogr 17:145–151

    Article  Google Scholar 

  • Luoto M, Virkkala R, Heikkinen RK (2007) The role of land cover in bioclimatic models depends on spatial resolution. Glob Ecol Biogeogr 16:34–42

    Article  Google Scholar 

  • Marcer A, Pino J, Pons X, Brotons L (2012) Modelling invasive alien species distributions from digital biodiversity atlases. Model upscaling as a means of reconciling data at different scales. Divers Distrib 18:1177–1189

    Article  Google Scholar 

  • McCullagh P, Nelder JA (1989) Generalized linear models. Chapman and Hall, London

    Book  Google Scholar 

  • McGill BJ (2010) Matters of scale. Science 328:575–576

    Article  CAS  PubMed  Google Scholar 

  • Menuz DR, Kettenring KM (2013) The importance of roads nutrients and climate for invasive plants establishment in riparian areas in the northwestern United States. Biol Invasions 15:1601–1612

    Article  Google Scholar 

  • Merritt DM, Wohl EE (2006) Plant dispersal along rivers fragmented by dams. River Res Appl 22:1–26

    Article  Google Scholar 

  • Milbau A, Stout JC, Graae BJ, Nijs I (2009) A hierarchical framework for integrating invisibility experiments incorporating different factors and spatial scales. Biol Invasions 11:941–950

    Article  Google Scholar 

  • Moreira FD, Ascensão F, Capinha C, Rodrigues D, Segurado P, Santos-Reis M, Rebelo R (2014) Modelling the risk of invasion by the red-swamp crayfish (Procambarus clarkii): incorporating local variables to better inform management decisions. Biol Invasions 17:273–285

    Article  Google Scholar 

  • Morimoto J, Kominami R, Koike T (2010) Distribution and characteristics of the soil seed bank of the black locust (Robinia pseudoacacia) in the headwater basin in northern Japan. Lands Ecol Eng 6:193–199

    Article  Google Scholar 

  • Ninyerola M, Pons X, Roure JM (2000) A methodological approach of climatological modelling of air temperature and precipitation through GIS techniques. Int J Climatol 20:1823–1841

    Article  Google Scholar 

  • Osawa T, Mitsuhashi H, Niwa H (2013) Many alien invasive disperse against the direction of stream flow in riparian areas. Ecol Complex 15:26–32

    Article  Google Scholar 

  • Patterson DT (1976) The history and distribution of five exotic weeds in North Carolina. Castanea 41:177–180

    Google Scholar 

  • Pauchard A, Shea K (2006) Integrating the study of non-native plant invasions across spatial scales. Biol Invasions 8:399–413

    Article  Google Scholar 

  • Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Biogeogr 12:361–371

    Article  Google Scholar 

  • Pearson RG, Dawson TP, Berry PM, Harrison PA (2002) SPECIES: a spatial evaluation of climate impact on the envelope of species. Ecol Model 154:289–300

    Article  Google Scholar 

  • Pearson RG, Dawson TP, Liu C (2004) Modelling species distributions in Britain: a hierarchical integration of climate and land-cover data. Ecography 27:285–298

    Article  Google Scholar 

  • Pearson RG, Thuiller W, Araújo MB, Martínez-Meyer E, Brotons L, McClean C, Miles L, Segurado P, Dawson TP, Lees DC (2006) Model-based uncertainty in species range prediction. J Biogeogr 33:1704–1711

    Article  Google Scholar 

  • Peterson AT (2003) Predicting the geography of species’ invasions via ecological niche modeling. Q Rev Biol 78:419–433

    Article  PubMed  Google Scholar 

  • Peterson AT (2006) Uses and requirements of ecological niche models and related distributional models. Biodivers Inform 3:59–72

    Article  Google Scholar 

  • Peterson AT, Vieglais DA (2001) Predicting species invasions using ecological niche modeling: new approaches from bioinformatics attack a pressing problem. Bioscience 51:363–371

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Shapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Phillips SJ, Dudik M, Elith J, Graham CH, Lehmann A, Leathwick J, Ferrier S (2009) Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol Appl 19:181–197

    Article  PubMed  Google Scholar 

  • Pyšek P, Bacher S, Chytrý M, Jarošik V, Wild J, Celesti-Grapow L, Gassó N, Kenis M, Lambdon PW, Nentwig W, Pergl J, Roques A, Sádlo J, Solarz W, Vilà M, Hulme PE (2010) Contrasting patterns in the invasions of European terrestrial and freshwater habitats by alien plants, insects and vertebrates. Glob Ecol Biogeogr 19:317–331

    Article  Google Scholar 

  • Radtke A, Ambraβ S, Zerbe S, Tonon G, Fontana V, Ammer C (2013) Traditional coppice forest management drives the invasion of Ailanthus altissima and Robinia pseudoacacia into deciduous forest. For Ecol Manag 291:308–317

    Article  Google Scholar 

  • Rangel TFLVB, Diniz-Filho JAF, Bini LM (2006) Towards an integrated computational tool for spatial analysis in macroecology and biogeography. Glob Ecol Biogeogr 15:321–327

    Article  Google Scholar 

  • R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing Vienna

  • Richardson DM, Whittaker RJ (2010) Conservation biogeography—foundations concepts and challenges. Divers Distrib 16:313–320

    Article  Google Scholar 

  • Richardson DM, Holmes PM, Esler KJ, Galatowitsch SM, Stromberg JC, Kirkman SP, Pyšek P, Hobbs RJ (2007) Riparian vegetation: degradation, alien plant invasions, and restoration prospects. Divers Distrib 13:126–139

    Article  Google Scholar 

  • Richardson DM, Iponga DM, Roura-Pascual N, Krug RM, Milton SJ, Hughes GO, Thuiller W (2010) Accommodating scenarios of climate change and management in modelling the distribution of the invasive tree Schinus molle in South Africa. Ecography 33:1049–1061

    Article  Google Scholar 

  • Ridgeway G (1999) The state of bootsting. Comput Sci Stat 31:172–181

    Google Scholar 

  • Rouget M, Richardson DM, Nel JL, Le Maitre DC, Egoh B, Mgidi T (2004) Mapping the potential ranges of major plant invaders in South Africa Lesotho and Swaziland using climatic suitability. Divers Distrib 10:475–484

    Article  Google Scholar 

  • Roura-Pascual N, Brotons L, Peterson AT, Thuiller W (2009) Consensual predictions of potential distributional areas for invasive species: a case study of Argentine ants in the Iberian Peninsula. Biol Invasions 11:1017–1031

    Article  Google Scholar 

  • Roura-Pascual N, Hui C, Ikeda T, Leday G, Richardson DM, Carpintero S, Espadaler X, Gómez C, Guénard B, Hartley S, Drushelnycky P, Lester PJ, McGeoch MA, Menke SB, Pedersen JS, Pitt JP, Reyes J, Sanders NJ, Suarez AV, Touyama Y, Ward D, Ward PS, Worner SP (2011) Relative roles of climatic suitability and anthropogenic influence in determining the pattern of spread in a global invader. PNAS 108:220–225

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sánchez-Fernández D, Lobo JM, Hernández-Manrique OL (2011) Species distribution models that do not incorporate global data misrepresent potential distributions: a case study using Iberian diving beetles. Divers Distrib 17:163–171

    Article  Google Scholar 

  • Sanderson EW, Jaiteh M, Levy MA, Redford KH, Wannebo AV, Woolmer G (2002) The human footprint and the last of the wild. Bioscience 52:891–904

    Article  Google Scholar 

  • Sanz-Elorza M, Dana ED, Sobrino E (2004) Atlas de las plantas alóctonas invasoras de España. Dirección General para la Biodiversidad, Madrid

    Google Scholar 

  • Säumel I, Kowarik I (2010) Urban rivers as dispersal corridors for primarily wind-dispersed invasive tree species. Landsc Urban Plan 94:244–249

    Article  Google Scholar 

  • Säumel I, Kowarik I (2013) Propagule morphology and river characteristics shape secondary water dispersal in tree species. Plant Ecol 214:1257–1272

    Article  Google Scholar 

  • Segurado P, Araújo MB (2004) An evaluation of methods for modelling species distributions. J Biogeogr 31:1555–1568

    Article  Google Scholar 

  • Soberón J (2007) Grinnellian and Eltonian niches and geographic distributions of species. Ecol Lett 10:1115–1123

    Article  PubMed  Google Scholar 

  • Stohlgren TJ, Jarnevich C, Chong GW, Evangelista PH (2006) Scale and plant invasions: a theory of biotic acceptance. Preslia 78:405–426

    Google Scholar 

  • Tessarolo G, Rangel TF, Araújo MB, Hortal J (2014) Uncertainty associated with survey design in Species Distribution Models. Divers Distrib 20:1258–1269

    Article  Google Scholar 

  • Thuiller W, Araújo MB, Pearson RG, Whittaker RJ, Brotons L, Lavorel S (2004) Uncertainty in predictions of extinction risk. Nature 430:33

    Article  CAS  Google Scholar 

  • Thuiller W, Richardson DM, Pyšek P, Midgley GF, Hughes GO, Rouget M (2005) Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Glob Change Biol 11:2234–2250

    Article  Google Scholar 

  • Thuiller W, Lafourcade B, Engler R, Araújo MB (2009) BIOMOD—a platform for ensemble forecasting of species distribution. Ecography 32:369–373

    Article  Google Scholar 

  • Thuiller W, Georges D, Engler R (2013) biomod2: Ensemble platform for species distribution modelling. R package version 3.1-18. http://cran.r-project.org/web/packages/biomod2/index.html

  • Trifilò P, Raimondo F, Nardini A, lo Gullo MA, Salleo S (2004) Drought resistance of Ailanthus altissima: root hydraulics and water relations. Tree Physiol 24:107–114

    Article  PubMed  Google Scholar 

  • Václavík T, Meentemeyer RK (2012) Equilibrium or not? Modelling potential distribution of invasive species in different stages of invasion. Divers Distrib 18:73–83

    Article  Google Scholar 

  • Vicente J, Alves P, Randin C, Guisan A, Honrado J (2010) What drives invisibility? A multi-model inference test and spatial modelling of alien plants species richness patterns in northern Portugal. Ecography 33:1081–1092

    Article  Google Scholar 

  • Vilà M, Ibáñez I (2011) Plant invasions in the landscape. Landscape Ecol 26:461–472

    Article  Google Scholar 

  • Vilà M, Pino J, Font X (2007) Regional assessment of plant invasions across different habitat types. J Veg Sci 18:35–42

    Article  Google Scholar 

  • Vogt K, Rasran L, Jensen K (2004) Water-borne seed transport and seed deposition during flooding in a small river-valley in Northern Germany. Flora 199:377–388

    Article  Google Scholar 

  • von Holle B, Motzkin G (2007) Historical land use and environmental determinants of nonnative plant distribution in coastal northeastern United States. Biol Conserv 136:33–43

    Article  Google Scholar 

  • Vorsino AE, Fortini LB, Amidon FA, Miller SE, Jacobi JD, Price JP, ‘Ohukani’ohi’a Gon S III, Koob GA (2014) Modeling Hawaiian ecosystem degradation due to invasive plants under current and future climates. PLoS One 9:e95427

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wang J, Huang B, Wang M, Wang D (2005) Transpiration water consumption of young Platycladus orientalis and Robinia pseudoacacia trees and their correction functions under different water supply. Ying Yong Sheng Tai Xue Bao 16:419–425

    PubMed  Google Scholar 

  • Weaver JE (1968) Prairie plants and their environment: A fifty-year study in the Midwest University of Nebraska Press. Nebraska, USA

    Google Scholar 

  • Welk E (2004) Constraints in range predictions of invasive plant species due to non-equilibrium distribution patterns: purple loosestrife (Lythrum salicaria) in North America. Ecol Model 179:551–567

    Article  Google Scholar 

  • Wieseler S (1998) Black Locust Plant Conservation Alliance. http://www.nps.gov/plants/alien/fact/rops1.htm. Accessed 25 Mar 2014

  • Wilcox DA (1989) Migration and control of purple loosestrife (Lythrum salicaria L.) along highway corridors. Environ Manage 13:365–370

    Article  Google Scholar 

  • Willis KJ, Whittaker RJ (2002) Species diversity-scale matters. Science 295:1245–1248

    Article  CAS  PubMed  Google Scholar 

  • Wilson JRU, Richardson DM, Rouget M, Procheş Ş, Amis MA, Henderson L, Thuiller W (2007) Residence time and potential range: crucial considerations in modelling plant invasions. Divers Distrib 13:11–22

    Article  Google Scholar 

  • Wittenberg R, Cock MJ (2005) Best practices for the prevention and management of invasive alien species. In: Mooney HA, Mack RN, McNeely JA, Neville LE, Schei PJ, Waage JK (eds) Invasive alien species. A new synthesis. Island Press, Wahington DC, pp 209–232

    Google Scholar 

  • Xihua Z, Xuequan L, Xingyi H, Cheng C, Yiqun S (2005) The drought tolerance characteristics of the main afforestation trees in Northwest Hubei Province. J Nanjing For Univ 29:67–70

    Google Scholar 

  • Yinfeng X, Huijuan S, Aizhen L, Xiaodong Z (1999) A study on the physiological indexes of drought-resistance to seedlings of seven afforestation tree species in the south of China. J Nanjing For Univ 23:13–16

    Google Scholar 

Download references

Acknowledgments

We would like to specially thank Wilfried Thuiller for his helpful ideas and support. We are grateful to Guillermo Valle Torres, Mónica Otero de Jesús and all the forest agents from Gipuzkoa, Zaragoza and El Parque Regional del Sureste who got involved in the field survey. We also thank Damien Georges and Julien Renaud for their valuable help with data management. We finally thank Ricardo Gómez Calmaestra (MAGRAMA) for providing us with data from the Atlas of the Invasive Aloctonous Plants of Spain. This study was supported by the Project CGL2010-16388/BOS of the Spanish Ministry of Economic Affairs and Competitiveness and POII10-0179-4700 of the Junta de Comunidades de Castilla-La Mancha and by the network REMEDINAL3-CM MAE-2719. ICR was supported by a Grant of the Spanish Ministry of Education, Culture and Sport (FPU fellowship, AP2010-1513) and by a Grant of the Alcalá University. PCD acknowledges CONICYT (Ministry of Education, Chile Government) for granting her stay at Concepción University (“Concurso de atracción de Capital Humano Extranjero-MEC” program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Cabra-Rivas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1726 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabra-Rivas, I., Saldaña, A., Castro-Díez, P. et al. A multi-scale approach to identify invasion drivers and invaders’ future dynamics. Biol Invasions 18, 411–426 (2016). https://doi.org/10.1007/s10530-015-1015-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-015-1015-z

Keywords

Navigation