Skip to main content
Log in

Invasion genetics of the Pacific oyster Crassostrea gigas in the British Isles inferred from microsatellite and mitochondrial markers

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

The Pacific oyster, Crassostrea gigas, native to northeast Asia, is one of the most important cultured shellfish species. In Europe, Pacific oysters first settled along the Atlantic coasts of France at the end of the 1960s but rapidly spread and are now widely established. Twenty-two sites in the United Kingdom (UK), Ireland, Denmark, France and Spain were sampled to assess genetic diversity and differentiation. Hatchery-propagated stocks from two hatcheries located in the UK also were included. Two main genetic clusters were identified from pairwise genetic differentiation indexes, Bayesian clustering methods or neighbour-joining analysis, based on 7 microsatellite loci: (1) a Northeast cluster (including feral samples from East England, Ireland and Denmark as well as UK hatchery stocks) and (2) a Southwest cluster (including samples from South Wales, South West England, France and Spain). The Southwest cluster had significantly higher allelic richness (A) and expected heterozygosity (H e ) (A: 45.68, H e : 0.928) than in the Northeast (A: 26.58, H e : 0.883); the two diverging by a small but significant F ST value (F ST  = 0.017, 95 % CI 0.014–0.021). A 739-bp fragment of the major noncoding region of the mitochondrial genome was sequenced in 248 oysters from 12 of the studied samples in Europe and in 25 oysters from Miyagi prefecture (Japan). A total of 81 haplotypes were found. Haplotype frequency analyses identified the same two clusters observed using microsatellites. This study highlights how the number and size of introduction events, aquaculture practices, genetic bottlenecks followed by genetic drift and natural dispersal can act concurrently to shape the genetic diversity and structure of introduced populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aranishi F, Okimoto T (2005) Sequence polymorphism in a novel noncoding region of Pacific oyster mitochondrial DNA. J Appl Genet 46(2):201–206

    PubMed  Google Scholar 

  • Astanei I, Gosling E, Wilson J, Powell E (2005) Genetic variability and phylogeography of the invasive zebra mussel, Dreissena polymorpha (Pallas). Mol Ecol 14(6):1655–1666

    Article  CAS  PubMed  Google Scholar 

  • Audzijonyte A, Wittmann KJ, Väinölä R (2008) Tracing recent invasions of the Ponto-Caspian mysid shrimp Hemimysis anomala across Europe and to North America with mitochondrial DNA. Divers Distrib 14(2):179–186

    Article  Google Scholar 

  • Bandelt HJ, Forster P, Rohl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16(1):37–48

    Article  CAS  PubMed  Google Scholar 

  • Boudry P, Collet B, Cornette F, Hervouet V, Bonhomme F (2002) High variance in reproductive success of the Pacific oyster (Crassostrea gigas, Thunberg) revealed by microsatellite-based parentage analysis of multifactorial crosses. Aquaculture 204(3–4):283–296

    Article  Google Scholar 

  • Carlton JT (1989) Man’s role in changing the face of the ocean: biological invasions and implications for conservation of near-shore environments. Conserv Biol 3(3):265–273

    Article  Google Scholar 

  • Dlugosch KM, Parker IM (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17(1):431–449

    Article  CAS  PubMed  Google Scholar 

  • Dupanloup I, Schneider S, Excoffier L (2002) A simulated annealing approach to define the genetic structure of populations. Mol Ecol 11(12):2571–2581

    Article  CAS  PubMed  Google Scholar 

  • Dupont L, Ellien C, Viard F (2007) Limits to gene flow in the slipper limpet Crepidula fornicata as revealed by microsatellite data and a larval dispersal model. Mar Ecol Prog Ser 349:125–138

    Article  Google Scholar 

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4(2):359–361

    Article  Google Scholar 

  • El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theor Appl Genet 92(7):832–839

    Article  PubMed  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8):2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  PubMed Central  PubMed  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform 1:47–50

    CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164(4):1567–1587

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gaffney PM, Davis CV, Hawes RO (1992) Assessment of drift and selection in hatchery populations of oysters (Crassostrea virginica). Aquaculture 105(1):1–20

    Article  Google Scholar 

  • Geller JB, Darling JA, Carlton JT (2010) Genetic perspectives on marine biological invasions. Annu Rev Mar Sci 2:367–393

    Article  Google Scholar 

  • Gerlach G, Jueterbock A, Kraemer P, Deppermann J, Harmand P (2010) Calculations of population differentiation based on GST and D: forget GST but not all of statistics! Mol Ecol 19(18):3845–3852

    Article  PubMed  Google Scholar 

  • Gillis NK, Walters LJ, Fernandes FC, Hoffman EA (2009) Higher genetic diversity in introduced than in native populations of the mussel Mytella charruana: evidence of population admixture at introduction sites. Divers Distrib 15(5):784–795

    Article  Google Scholar 

  • Goudet J (2002) Fstat 2.9.3.2. Uhttp://www2.unil.ch/popgen/softwares/fstat.htm

  • Grizel H, Héral M (1991) Introduction into France of the Japanese oyster (Crassostrea gigas). J Cons Int Explor Mer 47:399–403

    Article  Google Scholar 

  • Grosholz E (2002) Ecological and evolutionary consequences of coastal invasions. Trends Ecol Evol 17(1):22–27

    Article  Google Scholar 

  • Hara M, Sekino M (2007) Genetic differences between hatchery stocks and natural populations in Pacific Abalone (Haliotis discus) estimated using microsatellite DNA markers. Mar Biotechnol 9:74–81

    Article  CAS  PubMed  Google Scholar 

  • Hayes KA, Joshi RC, Thiengo SC, Cowie RH (2008) Out of South America: multiple origins of non-native apple snails in Asia. Divers Distrib 14(4):701–712

    Article  Google Scholar 

  • Holland BS (2000) Genetics of marine bioinvasions. Hydrobiologia 420(1):63–71

    Article  CAS  Google Scholar 

  • Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9(5):1322–1332

    Article  PubMed Central  PubMed  Google Scholar 

  • Huvet A, Boudry P, Ohresser M, Delsert C, Bonhomme F (2000a) Variable microsatellites in the Pacific oyster Crassostrea gigas and other cupped oyster species. Anim Genet 31(1):71–72

    Article  CAS  PubMed  Google Scholar 

  • Huvet A, Lapègue S, Magoulas A, Boudry P (2000b) Mitochondrial and nuclear DNA phylogeography of Crassostrea angulata, the Portuguese oyster endangered in Europe. Conserv Genet 1(3):251–262

    Article  CAS  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23(14):1801–1806

    Article  CAS  PubMed  Google Scholar 

  • Jost L (2008) GST and its relatives do not measure differentiation. Mol Ecol 17(18):4015–4026

    Article  PubMed  Google Scholar 

  • Kajita Y, O’Neill EM, Zheng Y, Obrycki JJ, Weisrock DW (2012) A population genetic signature of human releases in an invasive ladybeetle. Mol Ecol 21(22):5473–5483

    Article  PubMed  Google Scholar 

  • Keller SR, Gilbert KJ, Fields PD, Taylor DR (2012) Bayesian inference of a complex invasion history revealed by nuclear and chloroplast genetic diversity in the colonizing plant, Silene latifolia. Mol Ecol 21(19):4721–4734

    Article  PubMed  Google Scholar 

  • Kochmann J, Carlsson J, Crowe TP, Mariani S (2012) Genetic evidence for the uncoupling of local aquaculture activities and a population of an invasive species—a case study of Pacific oysters (Crassostrea gigas). J Hered 103(5):661–671

    Article  PubMed  Google Scholar 

  • Kolbe JJ, Larson A, Losos JB (2007) Differential admixture shapes morphological variation among invasive populations of the lizard Anolis sagrei. Mol Ecol 16(8):1579–1591

    Article  CAS  PubMed  Google Scholar 

  • Kolde R (2012) pheatmap: Pretty Heatmaps. R package version 0.6.1. http://CRAN.R-project.org/package=pheatmap

  • Lacoursière-Roussel A, Bock DG, Cristescu ME, Guichard F, Girard P, Legendre P, McKindsey CW (2012) Disentangling invasion processes in a dynamic shipping–boating network. Mol Ecol 21(17):4227–4241

    Article  PubMed  Google Scholar 

  • Li R, Li Q, Cornette F, Dégremont L, Lapègue S (2010) Development of four EST-SSR multiplex PCRs in the Pacific oyster (Crassostrea gigas) and their validation in parentage assignment. Aquaculture 310(1–2):234–239

    Article  CAS  Google Scholar 

  • Lind CE, Evans BS, Knauer J, Taylor JJU, Jerry DR (2009) Decreased genetic diversity and a reduced effective population size in cultured silver-lipped pearl oysters (Pinctada maxima). Aquaculture 286(1–2):12–19

    Article  Google Scholar 

  • Magoulas A, Ghjetvaj B, Terzoglou V, Zouros E (1998) Three polymorphic microsatellites in the Japanese oyster, Crassostrea gigas (Thunberg). Anim Genet 29:69–70

    CAS  Google Scholar 

  • Meistertzheim A-L, Arnaud-Haond S, Boudry P, Thébault M-T (2013) Genetic structure of wild European populations of the invasive Pacific oyster Crassostrea gigas due to aquaculture practices. Mar Biol 160(2):453–463

    Article  Google Scholar 

  • Minchin D, Duggan CB, Holmes JMC, Neiland S (1993) Introductions of exotic species associated with Pacific oyster transfers from France to Ireland. ICES, Copenhagen (Denmark) 11, CM 1993/F:27

  • Miossec L, Le Deuff RM, Goulletquer P (2009) Alien species alert: Crassostrea gigas (Pacific oyster). ICES Cooperative Research Report 299, 42 pp

  • Moehler J, Wegner KM, Reise K, Jacobsen S (2011) Invasion genetics of Pacific oyster Crassostrea gigas shaped by aquaculture stocking practices. J Sea Res 66:256–262

    Article  Google Scholar 

  • Nehring S (2006) NOBANIS—Invasive Alien Species Fact Sheet—Crassostrea gigas. From: Online Database of the North European and Baltic Network on Invasive Alien Species—NOBANIS. www.nobanis.org

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89(3):583–590

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Nei M, Chesser RK (1983) Estimation of fixation indices and gene diversities. Ann Hum Genet 47(3):253–259

    Article  CAS  PubMed  Google Scholar 

  • Neilson ME, Stepien CA (2011) Historic speciation and recent colonization of Eurasian monkey gobies (Neogobius fluviatilis and N. pallasi) revealed by DNA sequences, microsatellites, and morphology. Divers Distrib 17(4):688–702

    Article  Google Scholar 

  • Peakall ROD, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6(1):288–295

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Purcell K, Ling N, Stockwell C (2012) Evaluation of the introduction history and genetic diversity of a serially introduced fish population in New Zealand. Biol Invasions 14(10):2057–2065

    Article  Google Scholar 

  • Quayle DB (1988) Pacific oyster culture in British Columbia. Can B Fish Aquat Sci 218:241

    Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Reise K (1998) Pacific oysters invade mussel beds in the European Wadden Sea. Senck Marit 28:167–175

    Article  Google Scholar 

  • Reise K, Dankers N, Essink K (2005) Introduced species. In: Essink K, Dettmann C, Farke H, Laursen K, Lüerßen G, Marencic H, Wiersinga W (ed) Wadden Sea Quality Status Report 2004. Wadden Sea Ecosystem No. 19, pp 155–161

  • Rius M, Turon X, Ordóñez V, Pascual M (2012) Tracking invasion histories in the sea: facing complex scenarios using multilocus data. PLoS ONE 7(4):e35815

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Robert R, Gérard A (1999) Bivalve hatchery technology: the current situation for the Pacific oyster Crassostrea gigas and the scallop Pecten maximusin France. Aquat Living Resour 12(2):121–130

    Article  Google Scholar 

  • Rohfritsch A, Bierne N, Boudry P, Heurtebise S, Cornette F, Lapègue S (2013) Population genomics shed light on the demographic and adaptive histories of European invasion in the Pacific oyster, Crassostrea gigas. Evol Appl 6(7):1064–1078

    PubMed Central  PubMed  Google Scholar 

  • Roman J (2006) Diluting the founder effect: cryptic invasions expand a marine invader’s range. Proc Roy Soc B 273(1600):2453–2459

    Article  Google Scholar 

  • Roman J, Darling JA (2007) Paradox lost: genetic diversity and the success of aquatic invasions. Trends Ecol Evol 22(9):454–464

    Article  PubMed  Google Scholar 

  • Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4(1):137–138

    Article  Google Scholar 

  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145(4):1219–1228

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rousset F (2008) genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8(1):103–106

    Article  PubMed  Google Scholar 

  • Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19(18):2496–2497

    Article  CAS  PubMed  Google Scholar 

  • Shatkin G, Shumway SE, Hawes R (1997) Considerations regarding the possible introduction of the Pacific oyster (Crassostrea gigas) to the Gulf of Maine: a review of global experience. J Shellfish Res 16(2):463–477

    Google Scholar 

  • Simon-Bouhet B, Garcia-Meunier P, Viard F (2006) Multiple introductions promote range expansion of the mollusk Cyclope neritea (Nassariidae) in France: evidence from mitochondrial sequence data. Mol Ecol 15(6):1699–1711

    Article  CAS  PubMed  Google Scholar 

  • Spencer BE, Edwards DB, Kaiser MJ, Richardson CA (1994) Spatfalls of the non-native Pacific oyster, Crassostrea gigas, in British waters. Aquat Conserv Mar Freshw Ecosyst 4:203–217

    Article  Google Scholar 

  • Takezaki N, Nei M, Tamura K (2010) POPTREE2: software for constructing population trees from allele frequency data and computing other population statistics with Windows interface. Mol Biol Evol 27(4):747–752

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Taris N, Ernande B, McCombie H, Boudry P (2006) Phenotypic and genetic consequences of size selection at the larval stage in the Pacific oyster (Crassostreagigas). J Exp Mar Biol Ecol 333(1):147–158

    Article  Google Scholar 

  • Troost K (2010) Causes and effects of a highly successful marine invasion: case-study of the introduced Pacific oyster Crassostrea gigas in continental NW European estuaries. J Sea Res 64(3):145–165

    Article  Google Scholar 

  • Tsutsui ND, Suarez AV, Holway DA, Case TJ (2000) Reduced genetic variation and the success of an invasive species. Proc Natl Acad Sci USA 97(11):5948–5953

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Utting SD, Spencer BE (1992) Introductions of marine bivalve molluscs into the United Kingdom for commercial culture—case histories. ICES Mar Sci 194:84–91

    Google Scholar 

  • Voisin M, Engel CR, Viard F (2005) Differential shuffling of native genetic diversity across introduced regions in a brown alga: aquaculture vs. maritime traffic effects. Proc Natl Acad Sci USA 102(15):5432–5437

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Walne PR, Helm MM (1979) Introduction of Crassostrea gigas into the United Kingdom. In: Mann R (ed) Exotic species in mariculture. MIT Press, Cambridge, 363 pp, pp 83–105

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Wilson JRU, Dormontt EE, Prentis PJ, Lowe AJ, Richardson DM (2009) Something in the way you move: dispersal pathways affect invasion success. Trends Ecol Evol 24(3):136–144

    Article  PubMed  Google Scholar 

  • Yang C-C, Ascunce MS, Luo L-Z, Shao J-G, Shih C-J, Shoemaker D (2012) Propagule pressure and colony social organization are associated with the successful invasion and rapid range expansion of fire ants in China. Mol Ecol 21(4):817–833

    Article  PubMed  Google Scholar 

  • Zhan A, Perepelizin PV, Ghabooli S, Paolucci E, Sylvester F, Sardiña P, Cristescu ME, MacIsaac HJ (2012) Scale-dependent post-establishment spread and genetic diversity in an invading mollusc in South America. Divers Distrib 18(10):1042–1055

    Article  Google Scholar 

Download references

Acknowledgments

This research was partially financed by the European Union Atlantic Area Transnational Programme (2007–2013), project SEAFARE, Grant agreement No. 2009–1/123. The authors thank José Luis Gomez and Lasse Fast Jensen for providing oysters samples from Galicia and Limfjord. The authors are very grateful to Mike Camplin, Roger Covey, Claire Guy, Philip Hollyman, Ron Jessop, Judith Kochmann, Sven Laming, Hywel Lloyd, Willie McKnight, Nigel Mortimer, Hanna Nuuttila, Francis O’Beirn, Jack Sewell, Romy Wild and Nadescha Zwerschke for help during the field work. The Bayesian clustering analysis (STRUCTURE) was conducted on the University of Oslo Bioportal. Finally, the authors are grateful to Mathias Wegner for sharing the haplotype sequences and frequency table of the Wadden Sea samples. We thank associate editor Carol Stepien for correcting the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delphine Lallias.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4298 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lallias, D., Boudry, P., Batista, F.M. et al. Invasion genetics of the Pacific oyster Crassostrea gigas in the British Isles inferred from microsatellite and mitochondrial markers. Biol Invasions 17, 2581–2595 (2015). https://doi.org/10.1007/s10530-015-0896-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-015-0896-1

Keywords

Navigation