, Volume 15, Issue 9, pp 2081-2093

Shade tolerance of temperate Asian bamboos: a harbinger of their naturalization in Pacific Northwest coniferous forests?

Purchase on Springer.com

$39.95 / €34.95 / £29.95*

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Bamboos native to temperate East Asian coniferous forests arrive with increasing frequency in the United States as horticultural imports, and some are becoming naturalized locally. Given the strong floristic and physiognomic similarities between East Asian and western North American coniferous forests, we asked whether these introduced bamboos could tolerate the varied light regimes within coniferous forests in their new range. Seven temperate Asian bamboos and one North American bamboo (Arundinaria gigantea) were grown within shade structures in an experimental garden; these structures reduced ambient light to three light levels (50, 70, 90 % shade) that occur routinely within coniferous forests in the Pacific Northwest. Species’ responses under these light levels were measured by their light response curves to photosynthesis, resource allocation to light or carbon harvesting centers inferred by CO2 response curves, and shifts amongst forms of leaf Chlorophyll. Bashania fargesii has lower chlorophyll content and photosynthetic rates under high shade (90 %) relative to other Asian species and to B. fargesii grown in 50 and 70 % shade. Bashania fargesii, Sasa kurilensis and A. gigantea also displayed lower photosynthetic rates under 90 % shade compared to plants grown in 50 and 70 % shade and lower electron transport capacity under 70 and 90 % shade compared to plants grown in 50 % shade. In contrast, Pleioblastus chino, Pleioblastus distichus, Pseudosasa japonica, Sasa palmata and Sasaella ramosa display strong tolerance of low light. Our results indicate these five Asian bamboos (and others yet to be introduced) could skirt a major environmental barrier to new species establishment in these North American forests. Measuring a species’ light response curve offers a reliable, rapid means to assess an immigrant species’ potential to tolerate forests’ varied light regimes.