Skip to main content
Log in

Fluctuating salinity improves survival of the invasive freshwater golden mussel at high salinity: implications for the introduction of aquatic species through estuarine ports

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

In order to evaluate the resistance to salinity as a factor enhancing freshwater invasiveness, we assessed the tolerance of the mussel Limnoperna fortunei to salinity conditions mimicking changes in an estuary. We tested mussel mortality in 30-day exposures to constant and fluctuating salinities at different temperatures in the laboratory. Test conditions simulated different seasons of the year and locations with increasing influence of marine waters in Río de la Plata, Argentina. Significant mortality (31 % after 30 days) was observed at a constant salinity of 2 ‰, increasing to 45 and 57 % at 5 and 10 ‰, respectively. In contrast, considerably greater tolerances were observed when conditions in the experimental chamber fluctuated between salt water and fresh water. No significant mortality was observed in mussels exposed to a salinity cycle with abrupt salinity changes ranging 1–23 ‰ (mean 2.68 ‰) over a month. Tolerance to this type of regime was unaffected by different temperatures within ambient ranges. Tests at constant salinity underestimate the tolerance of this and probably other freshwater nonindigenous species (NIS) to short-term saltwater exposures. Estuarine ports account for ca. 2/3 of non-marine ports globally, thus constituting donor and recipient hotspots for the spread of NIS propagules into continental aquatic ecosystems via shipping vectors. The tolerance of L. fortunei to estuarine conditions likely contributes to the species’ remarkable invasive success. These results highlight the need to determine causes of invasiveness and to study NIS traits not alone but in combination with transport network properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Angonesi LG, Da Rosa NG, Bemvenuti CE (2008) Tolerance to salinities shocks of the invasive mussel Limnoperna fortunei under experimental conditions. Iheringia Sér Zool 98:66–69

    Article  Google Scholar 

  • Bailey SA, Duggan IC, Van Overdijk CDA, Johengen TH, Reid DF, MacIsaac HJ (2004) Salinity tolerance of diapausing eggs of freshwater zooplankton. Freshw Biol 49:286–295

    Article  Google Scholar 

  • Bailey SA, Deneau MG, Jean L, Wiley CJ, Leung B, MacIsaac HJ (2011) Evaluating efficacy of an environmental policy to prevent biological invasions. Environ Sci Technol 45:2554–2561

    Article  PubMed  CAS  Google Scholar 

  • Barbosa FG, Melo AS (2009) Predictive model of survival of the Golden Mussel (Limnoperna fortunei) in relation to variations of salinity in the Laguna dos Patos, RS, Brazil. Biota Neotropica 9:407–412

    Article  Google Scholar 

  • Barnard C, Frenette JJ, Vincent WF (2003) Planktonic invaders of the St. Lawrence estuarine transition zone: environmental factors controlling the distribution of zebra mussel veligers. Can J Fish Aquat Sci 60:1245–1257

    Article  Google Scholar 

  • Berezina NA (2003) Tolerance of freshwater invertebrates to changes in water salinity. Russ J Ecol 34:261–266

    Article  Google Scholar 

  • Boltovskoy D, Correa N, Cataldo D, Sylvester F (2006) Dispersion and impact of invasive freshwater bivalves: Limnoperna fortunei in the Río de la Plata watershed and beyond. Biol Invasions 8:947–963

    Article  Google Scholar 

  • Boltovskoy D, Karatayev AY, Burlakova L, Cataldo D, Karatayev VA, Sylvester F, Mariñelarena A (2009a) Significant ecosystem-wide effects of the swiftly spreading invasive freshwater bivalve Limnoperna fortunei. Hydrobiologia 636:271–284

    Article  Google Scholar 

  • Boltovskoy D, Sylvester F, Otaegui AY, Leytes V, Cataldo D (2009b) Environmental modulation of the reproductive activity of the invasive mussel Limnoperna fortunei in South America. Austral Ecol 37:719–730

    Article  Google Scholar 

  • Bradie JN, Bailey SA, van der Velde G, MacIsaac HJ (2010) Brine-induced mortality of non-indigenous invertebrates in residual ballast water. Mar Environ Res 70:395–401

    Article  PubMed  CAS  Google Scholar 

  • Brandt RAM (1974) The non-marine aquatic Mollusca of Thailand. Archiv Molluskenkd 105:1–423

    Google Scholar 

  • Briski E, Ghabooli S, Bailey SA, MacIsaac HJ (2011) Assessing invasion risk across taxa and habitats: life stage as a determinant of invasion success. Diversity Distrib 17:593–602

    Article  Google Scholar 

  • Byrne RA, Dietz TH (2006) Ionic and acid–base consequences of exposure to increased salinity in the zebra mussel, Dreissena polymorpha. Biol Bull 211:66–75

    Article  PubMed  CAS  Google Scholar 

  • Carlton JT, Geller JB (1993) Ecological roulette: the global transport of nonindigenous marine organisms. Science 61:78–82

    Article  Google Scholar 

  • Casper AF (2007) Chapitre III. Life at the edge: physiological constraints on freshwater mussels (Dreissena polymorpha Pallas and D. bugensis Andrusov) in a fluvial estuary. In: Contraintes écophysiologiques de la distribution d’une espèce: divergence parmi les populations sympatriques de Dreissena polymorpha (Pallas) et de D. bugensis (Andrusov) dans l’estuaire et du fleuve Saint-Laurent. PhD theses available from http://archimede.bibl.ulaval.ca/archimede/fichiers/24295/24295.html. Accessed 31 Oct 2012

  • Cataldo D, Boltovskoy D, Pose M (2003) Toxicity of chlorine and three nonoxidizing molluscicides to the pest mussel Limnoperna fortunei. J Am Water Works Assoc 95:66–78

    CAS  Google Scholar 

  • Cataldo D, Vinocur A, O′Farrell I, Paolucci E, Leites V, Boltovskoy D (2012) The introduced bivalve Limnoperna fortunei boosts Microcystis growth in Salto Grande reservoir (Argentina): evidence from mesocosm experiments. Hydrobiologia 680:25–38

    Article  CAS  Google Scholar 

  • Colautti RI, MacIsaac HJ (2004) A neutral terminology to define invasive species. Divers Distrib 10:135–141

    Article  Google Scholar 

  • Colautti RI, Grigorovich IA, MacIsaac HJ (2006) Propagule pressure: a null model for biological invasions. Biol Invasions 8:1023–1037

    Article  Google Scholar 

  • Deaton LE, Derby JGS, Subhedar N, Greenberg MJ (1989) Osmoregulation and salinity tolerance in two species of bivalve mollusc: Limnoperna fortunei and Mytilopsis leucophaeta. J Exp Mar Biol Ecol 133:67–79

    Article  Google Scholar 

  • Devin S, Beisel JN (2007) Biological and ecological characteristics of invasive species: a gammarid study. Biol Invasions 9:13–24

    Article  Google Scholar 

  • Dietz TH, Wilcox SJ, Byrne RA, Lynn JW, Silverman H (1996) Osmotic and ionic regulation of north american zebra mussels (Dreissena polymorpha). Am Zool 36:364–372

    CAS  Google Scholar 

  • Drake JM, Lodge DM (2004) Global hot spots of biological invasions: evaluating options for ballast-water management. Proc R Soc B 271:575–580

    Article  PubMed  Google Scholar 

  • Ellis S, MacIsaac HJ (2009) Salinity tolerance of Great Lakes invaders. Freshw Biol 54:77–89

    Article  CAS  Google Scholar 

  • Floerl O, Inglis GJ, Dey K, Smith A (2009) The importance of transport hubs in stepping-stone invasions. J Appl Ecol 46:37–45

    Article  Google Scholar 

  • Giberto DA, Sardiña P (2009) Mytella charruana D’Orbigny 1842 y Limnoperna fortunei (Dunker, 1857) (Bivalvia: Mytilidae) en la zona mixohalina del Río de la Plata: ¿bancos residuales o futuras poblaciones locales? VII Jornadas Nacionales de Ciencias del Mar, 30 November–4 December 2009, Bahía Blanca, Argentina

  • Gordon DR, Gantz CA (2011) Risk Assessment for invasiveness differs for aquatic and terrestrial plant species. Biol Invasions 13:1829–1842

    Article  Google Scholar 

  • Guerrero RA, Piola AR, Molinari GN, Osiroff AP, Jáuregui SI (2010) Climatología de temperatura y salinidad en el Río de la Plata y su frente marítimo. Argentina-Uruguay. Instituto Nacional de Investigación y Desarrollo Pesquero, Secretaría de Agricultura, Ganadería y Pesca, Mar del Plata, Argentina

  • Huang Z, Li C, Zhang L, Li F, Zheng C (1981) The distribution of fouling organisms in Changjiang river estuary. Oceanol Limnol Sin 12:531–537

    Google Scholar 

  • Hui C, Richardson DM, Robertson MP, Wilson JRU, Yates CJ (2011) Macroecology meets invasion ecology: linking the native distributions of Australian acacias to invasiveness. Divers Distrib 17:872–883

    Article  Google Scholar 

  • IMO—International Maritime Organization (2004) International convention for the control and management of ships’ ballast water and sediments. Adopted 13 Feb 2004

  • Jørgensen CB (1990) Bivalve filter feeding: Hydrodynamics, bioenergetics, physiology and ecology. Olsen and Olsen, Fredensborg

    Google Scholar 

  • Karatayev AY, Burlakova LE, Padilla DK (1998) Physical factors that limit the distribution and abundance of Dreissena polymorpha (Pall.). J Shellfish Res 17:1219–1235

    Google Scholar 

  • Karatayev AY, Burlakova LE, Padilla DK, Mastitsky SE, Olenin S (2009) Invaders are not a random selection of species. Biol Invasions 11:2009–2019

    Article  Google Scholar 

  • Karatayev AY, Burlakova LE, Karatayev VA, Boltovskoy D (2010) Limnoperna fortunei versus Dreissena polymorpha: population densities and benthic community impacts of two invasive freshwater bivalves. J Shellfish Res 29:975–984

    Article  Google Scholar 

  • Keller RP, Drake JM, Drew MB, Lodge DM (2011) Linking environmental conditions and ship movements to estimate invasive species transport across the global shipping network. Divers Distrib 17:93–102

    Article  Google Scholar 

  • Kilgour BW, Mackie GL, Baker MA, Keppel R (1994) Effects of salinity on the condition and survival of zebra mussels (Dreissena polymorpha). Estuaries 17:385–393

    Article  Google Scholar 

  • Morton B (1977) The population dynamics of Limnoperna fortunei (Dunker 1857) (Bivalvia: Mytilacea) in Plover Cove Reservoir, Hong Kong. Malacologia 16:165–182

    Google Scholar 

  • Muirhead JR, MacIsaac HJ (2005) Development of inland lakes as hubs in an invasion network. J Appl Ecol 42:80–90

    Article  Google Scholar 

  • Oliveira MD, Hamilton SK, Jacobi CM (2010) Forecasting the expansion of the invasive golden mussel Limnoperna fortunei in Brazilian and North American rivers based on its occurrence in the Paraguay River and Pantanal wetland of Brazil. Aquat Inv 5:59–73

    Article  Google Scholar 

  • Orlova MI, Panov VE (2004) Establishment of the zebra mussel, Dreissena polymorpha (Pallas), in the Neva Estuary (Gulf of Finland, Baltic Sea): distribution, population structure and possible impact on local unionid bivalves. Hydrobiologia 514:207–217

    Article  Google Scholar 

  • Rajagopal S, Van Der Velde G, Van Der Gaag M, Jenner HA (2003) How effective is intermittent chlorination to control adult mussel fouling in cooling water systems? Water Res 37:329–338

    Article  PubMed  CAS  Google Scholar 

  • Ricciardi A (1998) Global range expansion of the Asian mussel Limnoperna fortunei (Mytilidae): another fouling threat to freshwater systems. Biofouling 13:97–106

    Article  Google Scholar 

  • Ruiz GM, Carlton JT, Grosholz ED, Hines AH (1997) Global invasions of marine and estuarine habitats by non-indigenous species: mechanisms, extent, and consequences. Am Zool 37:621–632

    Google Scholar 

  • Saint Lawrence Seaway Development Corporation (2008) Seaway regulations and rules. Code of federal regulations 33-CFR Part 401, 2008

  • Strayer DL (2006) The benthic animal communities of the tidal-freshwater Hudson River estuary. In: Levinton JS, Waldman JR (eds) The Hudson River estuary. Cambridge University Press, New York, pp 266–278

    Chapter  Google Scholar 

  • Strayer DL, Smith LC (1993) Distribution of the zebra mussel (Dreissena polymorpha) in estuaries and brackish waters. In: Nalepa TF, Schloesser D (eds) Zebra mussels biology, impacts, and control. Lewis Publishers, Boca Raton, pp 715–728

    Google Scholar 

  • Sylvester F, MacIsaac HJ (2010) Is vessel hull fouling an invasion threat to the Great Lakes? Divers Distrib 16:132–143

    Article  Google Scholar 

  • Sylvester F, Kalaci O, Leung B, Lacoursière-Roussel A, Murray CC, Choi FM, Bravo MA, Therriault TW, MacIsaac HJ (2011) Hull fouling as an invasion vector: can simple models explain a complex problem? J Appl Ecol 48:415–423

    Article  Google Scholar 

  • Van Kleunen M, Weber E, Fischer M (2010) A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol Lett 13:235–245

    Article  PubMed  Google Scholar 

  • Walton WC (1996) Occurrence of zebra mussel (Dreissena polymorpha) in the oligohaline Hudson River, New York. Estuaries 19:612–618

    Article  Google Scholar 

  • Wilcox SJ, Dietz TH (1998) Salinity tolerance of the freshwater bivalve Dreissena polymorpha (Pallas, 1771) (Bivalvia, Dreissenidae). Nautilus 111:143–148

    Google Scholar 

  • Wright DA, Setzler-Hamilton EM, Magee JA, Kennedy VS, Mcininch SP (1996) Effect of salinity and temperature on survival and development of young zebra (Dreissena polymorpha) and quagga (Dreissena bugensis) mussels. Estuaries 19:19–628

    Google Scholar 

  • Yuan W, Walters LJ, Schneider KR, Hoffman EA (2010) Exploring the survival threshold: a study of salinity tolerance of the nonnative mussel Mytella charruana. J Shellfish Res 29:15–422

    CAS  Google Scholar 

  • Zalewski A, Michalska-Parda A, Ratkiewicz M, Kozakiewicz M, Bartoszewicz M, Brzeziński M (2011) High mitochondrial DNA diversity of an introduced alien carnivore: comparison of feral and ranch American mink Neovison vison in Poland. Divers Distrib 17:57–768

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Raúl Guerrero for putting at our disposal the salinity record produced by the FREPLATA project, and to Diego Giberto for information and samples of L. fortunei collected in the Río de la Plata mixohaline area. Gerardo Cueto helped with the statistical analysis. Erik Thuesen, Ladd Johnson, and two anonymous reviewers provided very helpful comments on this work. This work was financed by grants from the University of Buenos Aires (UBA X-020 and 20020100100035) and from the Argentine Agencia Nacional de Promoción Científica y Tecnológica (PICT 2007 1968) to DB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Sylvester.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 39 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sylvester, F., Cataldo, D.H., Notaro, C. et al. Fluctuating salinity improves survival of the invasive freshwater golden mussel at high salinity: implications for the introduction of aquatic species through estuarine ports. Biol Invasions 15, 1355–1366 (2013). https://doi.org/10.1007/s10530-012-0373-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-012-0373-z

Keywords

Navigation