Skip to main content
Log in

The non-native chironomid Eretmoptera murphyi in Antarctica: erosion of the barriers to invasion

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Antarctica is the continent least affected by invasive species, but climate change and increasing human activity are increasing this threat. Antarctic terrestrial ecosystems generally have low biodiversity with simple community structures and little competition for resources. Consequently, species with pre-adaptations or capabilities that allow them to tolerate polar conditions may have disproportionately large ecosystem impacts when introduced to Antarctica compared with other regions of the Earth. Here we investigate the invasion risk associated with the flightless chironomid midge, Eretmoptera murphyi, which was accidentally introduced from South Georgia (54°S) to Signy Island, South Orkney Islands (61°S), probably during plant transplantation experiments in the 1960s. Larval size class distribution analysis indicated that E. murphyi has a 2 year life cycle on Signy Island, supporting previous suggestions. Estimates of litter turnover show that recent large increases in E. murphyi population density and extent are likely to increase nutrient cycling rates on Signy Island substantially. Existing physiological adaptations may allow E. murphyi to colonise higher latitude locations. Growth rate and microhabitat climatic modelling show that temperature constraints on larval development on Anchorage Island (68°S) are theoretically similar to those on Signy Island even though it is ~750 km further south. Establishment of this non-native midge at climatically similar intervening locations along the western Antarctic Peninsula is therefore plausible. Currently, lack of effective natural dispersal mechanisms is probably limiting the spread of the midge. However, dispersal to other areas of the Antarctic Peninsula may occur via human-assisted transportation, highlighting the importance of appropriate biosecurity measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allegrucci G, Carchini G, Todisco V, Convey P, Sbordoni V (2006) A molecular phylogeny of Antarctic Chironomidae and its implications for biogeographical history. Polar Biol 29:320–326

    Article  Google Scholar 

  • Allegrucci G, Carchini G, Convey P, Sbordoni V (2012) Evolutionary geographic relationships among chironomid midges from maritime Antarctic and sub-Antarctic islands. Biol J Linn Soc Lond 106:258–274

    Article  Google Scholar 

  • Antarctic Treaty Consultative Parties (ATCP) (1991) Protocol on environmental protection to the Antarctic Treaty. CM 1960. Her Majesty’s Stationery Office, London

  • Block W, Burn AJ, Richard KJ (1984) An insect introduction to the maritime Antarctic. Biol J Linn Soc Lond 23:33–39

    Article  Google Scholar 

  • Bokhorst S, Huiskes A, Convey P, van Bodegom PM, Aerts R (2007) The effect of environmental change on vascular plant and cryptogam communities from the Falkland Islands and the Maritime Antarctic. BMC Ecol 7:15

    Article  PubMed  Google Scholar 

  • Bokhorst S, Huiskes A, Convey P, van Bodegom PM, Aerts R (2008) Climate change effects on soil arthropod communities from the Falkland Islands and the Maritime Antarctic. Soil Biol Biochem 40:1547–1556

    Article  CAS  Google Scholar 

  • Bracegirdle TJ, Conolley WM, Turner J (2008) Antarctic climate change over the twenty first century. J Geophys Res–Atmos 113: D03103

  • Burn AJ (1982) A cautionary tale–two recent introductions to the maritime Antarctic. Comité National Francais des Recherches Antarctiques 51:521

    Google Scholar 

  • Butler MG (1982) A 7-year life cycle for two Chironomous species in Arctic Alaskan tundra pools (Diptera: Chironomidae). Can J Zool 60:58–70

    Article  Google Scholar 

  • Convey P (1992) Aspects of the biology of the midge, Eretmoptera murphyi Schaeffer, introduced to Signy Island, maritime Antarctic. Polar Biol 12:653–657

    Article  Google Scholar 

  • Convey P (1994) Growth and survival strategy of the Antarctic mite Alaskozetes antarcticus. Ecography 17:97–107

    Article  Google Scholar 

  • Convey P (1996a) The influence of environmental characteristics on life history attributes of Antarctic terrestrial biota. Biol Rev Camb Philos Soc 71:191–225

    Article  Google Scholar 

  • Convey P (1996b) Overwintering strategies of terrestrial invertebrates in Antarctica–the significance of flexibility in extremely seasonal environments. Eur J Entomol 93:489–505

    Google Scholar 

  • Convey P (2006a) Antarctic climate change and its influence on terrestrial ecosystems. In: Bergstrom D, Convey P, Huiskes AHL (eds) Trends in Antarctic terrestrial and limnetic ecosystems: Antarctica as a global indicator. Springer, Dordrecht, pp 253–272

    Chapter  Google Scholar 

  • Convey P (2006b) Biological invasions. In: Bergstrom D, Convey P, Huiskes AHL (eds) Trends in Antarctic terrestrial and limnetic ecosystems: Antarctica as a global indicator. Springer, Dordrecht, pp 193–220

    Chapter  Google Scholar 

  • Convey P, Block W (1996) Antarctic Diptera: ecology, physiology and distribution. Eur J Entomol 93:1–13

    Google Scholar 

  • Convey P, Pugh PJA, Jackson C, Murray AW, Ruhland CT, Xiong FS, Day TA (2002) Response of Antarctic terrestrial microarthropods to long-term climate manipulations. Ecology 83:3130–3140

    Article  Google Scholar 

  • Convey P, Bindschadler R, Di Prisco G, Fahrbach E, Gutt J, Hodgson DA, Mayewski PA, Summerhayes CP, Turner J, ACCE Consortium (2009) Antarctic climate change and the environment. Antarctic Sci 21:541–563

    Article  Google Scholar 

  • Convey P, Key RS, Key RJD (2010) The establishment of a new ecological guild of pollinating insects on sub-Antarctic South Georgia. Antarctic Sci 22:508–512

    Article  Google Scholar 

  • Cranston PS (1985) Eretmoptera murphyi Schaeffer (Diptera: Chironomidae), an apparently parthogenetic Antarctic midge. Brit Antarct Surv Bull 66:35–45

    Google Scholar 

  • Danks HV (1981) Arctic arthropods: a review of systematics and ecology with particular reference to the North American fauna. Entomological Society of Canada, Ottawa 608 pp

    Google Scholar 

  • Davey MC, Pickup J, Block W (1992) Temperature-variation and its biological significance in fellfield habitats on a maritime Antarctic island. Antarct Sci 4:383–388

    Article  Google Scholar 

  • Davis RC (1981) Structure and function of two Antarctic terrestrial moss communities. Ecol Monogr 51:125–143

    Article  Google Scholar 

  • Edwards JA (1979) An experimental introduction of vascular plants from South Georgia to the maritime Antarctic. Br Antarct Surv Bull 49:73–80

    Google Scholar 

  • Edwards JA, Greene DM (1973) The survival of Falkland Islands transplants at South Georgia and Signy Island, South Orkney Islands. Brit Antarct Surv Bull 33 & 34: 33–45

    Google Scholar 

  • Everatt MJ, Worland MR, Bale JS, Convey P, Hayward SAL (2012) Pre-adapted to the maritime Antarctic? Rapid cold hardening of the midge, Eretmoptera murphyi. J Insect Physiol. doi:10.1016/j.jinsphys.2012.05.009

  • Frenot Y, Chown SL, Whinam J, Selkirk PM, Convey P, Skotnicki M, Bergstrom DM (2005) Biological invasions in the Antarctic: extent, impacts and implications. Biol Rev Camb Philos Soc 80:45–72

    Article  PubMed  Google Scholar 

  • Greene SW, Gressitt JL, Korb D, Llano GA, Rudolph, ED, Singer R, Steere WC, Ugolini FC (1967) Terrestrial life in Antarctica. Antarctic Map Folio Series, No. 5. American Geographical Society, New York, 11 pls

  • Hahn S, Reinhardt K (2006) Habitat preference and reproductive traits in the Antarctic midge Parochlus steinenii (Diptera: Chironomidae). Antarct Sci 18:175–181

    Article  Google Scholar 

  • Hänel C, Chown SL (1998) The impact of a small, alien invertebrate on a sub-Antarctic terrestrial ecosystem: Limnophyes minimus (Diptera, Chironomidae) at Marion Island. Polar Biol 20:99–106

    Article  Google Scholar 

  • Heilbronn D, Walton DWH (1984) The morphology of some periglacial features on South Georgia and their relationship to the local environment. Br Antarct Surv Bull 64:21–36

    Google Scholar 

  • Hughes KA, Convey P (2010) The protection of Antarctic terrestrial ecosystems from inter- and intra-continental transfer of non-indigenous species by human activities: a review of current systems and practices. Glob Environ Change 20:96–112

    Article  Google Scholar 

  • Hughes KA, Convey P (2012) Determining the native/non-native status of newly discovered terrestrial and freshwater species in Antarctica–current knowledge, methodology and management action. J Environ Manage 93:52–66

    Article  PubMed  Google Scholar 

  • Hughes KA, Worland MR (2010) Spatial distribution, habitat preference and colonisation status of two alien terrestrial invertebrate species in Antarctica. Antarc Sci 22:221–231

    Article  Google Scholar 

  • Hughes KA, Convey P, Maslen NR, Smith RIL (2010) Accidental transfer of non-native soil organisms into Antarctica on construction vehicles. Biol Invasions 12:875–891

    Article  Google Scholar 

  • Hughes KA, Lee JE, Tsujimoto M, Imura S, Bergstrom DM, Ware C, Lebouvier M, Huiskes AHL, Gremmen NJM, Frenot Y, Bridge PD, Chown SL (2011) Food for thought: risks of non-native species transfer to the Antarctic region with fresh produce. Biol Conserv 144:1682–1689

    Article  Google Scholar 

  • International Association of Antarctica Tour Operators (IAATO) (2009) Boot, clothing and equipment decontamination guidelines for small boat operations. Available via: http://www.iaato.org/docs/Boot_Washing07.pdf

  • Kahm M, Hasenbrink G, Lichtenberg-Fraté H, Ludwig J, Kschischo M (2010) grofit: fitting biological growth curves with R. J Stat Softw 33(7):1–21

    Google Scholar 

  • Kennedy AD (1993) Water as a limiting factor in the Antarctic terrestrial environment: a biogeographical synthesis. Arct Alp Res 25:308–315

    Article  Google Scholar 

  • King JC, Comiso JC (2003) The spatial coherence of interannual temperature variations in the Antarctic Peninsula. Geophys Res Lett 30: 1040. 4 pp

    Google Scholar 

  • Lebouvier M, Laparie M, Hullé M, Marais A, Cozic Y, Lalouette L, Vernon P, Candresse T, Frenot Y, Renault D (2011) The significance of the sub-Antarctic Kerguelen Islands for the assessment of the vulnerability of native communities to climate change, alien insect invasions and plant viruses. Biol Invasions 13:1195–1208

    Article  Google Scholar 

  • Lee JE, Chown SL (2009a) Quantifying the propagule load associated with the construction of an Antarctic research station. Antarct Sci 21:471–475

    Article  Google Scholar 

  • Lee JE, Chown SL (2009b) Breaching the dispersal barrier to invasion: quantification and management. Ecol Appl 19:1944–1957

    Article  PubMed  Google Scholar 

  • Longton RE (1967) Vegetation in the maritime Antarctic. Phil Trans Roy Soc Lon Ser B-Biol Sci 252:213–235

    Article  Google Scholar 

  • MacMillan HA, Sinclair BJ (2010) Mechanisms underlying chill-coma. J Insect Phys 57:12–20

    Article  Google Scholar 

  • McGeoch MA, le Roux PC, Hugo EA, Chown SL (2006) Species and community responses to short-term climate manipulation: microarthropods in the sub-Antarctic. Aust Ecol 31:719–731

    Article  Google Scholar 

  • Mercer RD, Gabriel AGA, Barendse J, Marshall DJ, Chown SL (2001) Invertebrate body sizes from Marion Island. Antarct Sci 13:135–143

    Article  Google Scholar 

  • Morris EM, Vaughan DG (2003) Spatial and temporal variation of surface temperature on the Antarctic Peninsula and the limit of viability of ice shelves. Antarct Res Ser 79:61–68

    Article  Google Scholar 

  • Peckham V (1971) Notes on the chironomid midge Belgica antarctica Jacobs at Anvers Island in the maritime Antarctic. Pac Insects Monogr 25:145–166

    Google Scholar 

  • R Development Core Team (2005) A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. http://www.R-project.org

  • Reichle DE (1968) Relation of body size to food intake, oxygen consumption, and trace element metabolism in forest floor arthropods. Ecology 49:538–542

    Article  Google Scholar 

  • Royles J, Ogée J, Wingate L, Hodgson DA, Convey P, Griffiths H (2012) Carbon isotope evidence for recent climate-related enhancement of CO2 assimilation and peat accumulation rates in Antarctica. Glob Change Biol. doi:10.1111/j.1365-2486.2012.02750.x

  • Smith VR (2007) Introduced slugs and indigenous caterpillars as facilitators of carbon and nutrient mineralisation on a sub-Antarctic island. Soil Biol Biochem 39:709–713

    Article  CAS  Google Scholar 

  • Smith VR (2008) Energy flow and nutrient cycling in the Marion Island terrestrial ecosystem: 30 years on. Polar Rec 44:211–226

    Article  Google Scholar 

  • Steig EJ, Schneider DP, Rutherford SD, Mann ME, Comiso JC, Shindell DT (2009) Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year. Nature 457:459–462

    Article  PubMed  CAS  Google Scholar 

  • Sugg P, Edwards JS, Baust J (1983) Phenology and life history of Belgica antarctica, an Antarctic midge (Diptera: Chironomidae). Ecol Entomol 8:105–113

    Article  Google Scholar 

  • Tin T, Fleming ZL, Hughes KA, Ainley DG, Convey P, Moreno CA, Pfeiffer S, Scott J, Snape I (2009) Impacts of local human activities on the Antarctic environment. Antarct Sci 21:3–33

    Google Scholar 

  • Turner J, Colwell SR, Marshall GJ, Lachlan-Cope TA, Carleton AM, Jones PD, Lagun V, Reid PA, Iagovkina S (2005) Antarctic climate change during the last 50 years. Int J Climatol 25:279–294

    Article  Google Scholar 

  • Turner J, Bindschadler R, Convey P, di Prisco G, Fahrbach E, Gutt G, Hodgson D, Mayewski P, Summerhayes C (eds) (2009) Antarctic climate change and the environment. Cambridge, UK: SCAR, 526 pp

  • Usher MB, Edwards M (1984) A dipteran from south of the Antarctic Circle: Belgica antarctica (Chironomidae) with a description of its larvae. Biol J Linn Soc 23:19–31

    Article  Google Scholar 

  • Vaughan DG (2006) Recent trends in melting conditions on the Antarctic Peninsula and their implications for ice-sheet mass balance and sea level. Arct Antarct Alp Res 38:147–152

    Article  Google Scholar 

  • Vaughan DG, Marshall GJ, Connolley WM, Parkinson C, Mulvaney R, Hodgson DA, King JC, Pudsey CJ, Turner J (2003) Recent rapid regional climate warming on the Antarctic Peninsula. Clim Change 60:243–274

    Article  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, London 462 pp

    Book  Google Scholar 

  • Wall DH, Virginia RA (1999) Controls on soil biodiversity: insights from extreme environments. Appl Soil Ecol 13:137–150

    Article  Google Scholar 

  • Whinam J, Chilcott N, Bergstrom DM (2005) Subantarctic hitchhikers: expeditioners as vectors for the introduction of alien organisms. Biol Conserv 121:207–219

    Article  Google Scholar 

  • Worland MR (2010) Eretmoptera murphyi: pre-adapted to survive a colder climate. Physiol Entomol 35:140–147

    Article  Google Scholar 

Download references

Acknowledgments

We thank Peter Fretwell for map preparation, Stephen Roberts for discussions on the Holocene climate on South Georgia and David Vaughan, Steven Colwell, Gareth Marshall and John Turner for climate information. We thank two anonymous reviewers for their useful comments on the manuscript. This paper contributes to the British Antarctic Survey Polar Science for Planet Earth programme Ecosystems, the Environment Office Long Term Monitoring and Survey project (EO-LTMS), and the international SCAR EBA (Evolution and Biodiversity in Antarctica) research programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin A. Hughes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hughes, K.A., Worland, M.R., Thorne, M.A.S. et al. The non-native chironomid Eretmoptera murphyi in Antarctica: erosion of the barriers to invasion. Biol Invasions 15, 269–281 (2013). https://doi.org/10.1007/s10530-012-0282-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-012-0282-1

Keywords

Navigation