Skip to main content
Log in

Litter legacy increases the competitive advantage of invasive Phragmites australis in New England wetlands

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Exotic plant invaders that form monocultures and exclude native plants are often the most detrimental to native diversity and the hardest to eradicate. To generate a monoculture, the invader must garner more resources than resident natives and, once established, persist despite high densities of conspecific neighbors. Coincident with expansion and long-term persistence, successful invaders typically accumulate senesced material, but the role of this litter in mediating the invader’s ability to establish and maintain monospecific dominance has rarely been investigated. We used stands of the common reed, Phragmites australis, a prolific wetland invader in North America, to explore the impact of litter on interspecific competition with the native rush, Juncus gerardii, and intraspecific competition among live shoots. In 10 × 10 m areas positioned on Phragmites expansion fronts, we removed litter to isolate its effect from live Phragmites on light availability, aboveground biomass and community composition. Compared to adjacent, unmanipulated fronts, light availability nearly tripled and Juncus biomass increased >170% in litter removal areas after 4 months. Although the positive response of Juncus and native forbs was most pronounced on the leading edge of Phragmites stands, litter removal triggered a 271% increase in native plant biomass even in the interior of stands where Phragmites’ live stem density was highest. Litter treatment did not significantly affect Phragmites biomass, but more, shorter stems emerged in litter removals revealing Phragmites modifies stem phenotype in response to local litter and light conditions. These results suggest that litter plays a central role in Phragmites’ invasion process, from initial establishment to subsequent monospecific dominance. Thus, prescribed litter removal may be an effective strategy to enhance coexistence of native plant populations in wetlands where eradication of invasive monocultures is not an ecologically or economically feasible option.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Benoit LK, Askins RA (1999) Impact of the spread of Phragmites on the distribution of birds in Connecticut tidal marshes. Wetlands 19:194–208. doi:10.1007/BR03161749

    Article  Google Scholar 

  • Bertness MD, Ewanchuk PJ, Silliman BR (2002) Anthropogenic modification of New England salt marsh landscapes. Proc Natl Acad Sci USA 99:1395–1398. doi:10.1073/pnas.022447299

    Article  CAS  PubMed  Google Scholar 

  • Chambers RM, Meyerson LA, Saltonstall K (1999) Expansion of Phragmites australis into tidal wetlands of North America. Aquat Bot 64:261–273. doi:10.1016/S0304-3770(99)00055-8

    Article  Google Scholar 

  • Coleman HM, Levine JM (2007) Mechanisms underlying the impacts of exotic annual grasses in a coastal California meadow. Biol Inv 9:65–71. doi:10.1007/s10530-006-9008-6

    Article  Google Scholar 

  • Crain CM, Silliman BR, Bertness SL, Bertness MD (2004) Physical and biotic drivers of plant distribution across estuarine salinity gradients. Ecology 85:2539–2549. doi:10.1890/03-0745

    Article  Google Scholar 

  • de Jong TJ, Klinkhamer PGL (1985) The negative effects of litter of parent plants of Cirsium vulgare on their offspring: autotoxicity or immobilization? Oecologia 65:153–160

    Article  Google Scholar 

  • Ellison AM (1987) Density-dependent dynamics of Salicornia europaea monocultures. Ecology 68:737–741

    Article  Google Scholar 

  • Evans RD, Rimer R, Sperry L, Belnap J (2001) Exotic plant invasion alters nitrogen dynamics in an arid grassland. Ecol Appl 11:1301–1310

    Article  Google Scholar 

  • Farnsworth EJ, Meyerson LA (2003) Comparative ecophysiology of four wetland plant species along a continuum of invasiveness. Wetlands 23:750–762. doi:10.1672/0277-5212

    Article  Google Scholar 

  • Farrer EC, Goldberg DE (2009) Litter drives ecosystem and plant community changes in cattail invasion. Ecol Appl 19:398–412. doi:10.1890/08-0485.1

    Article  PubMed  Google Scholar 

  • Farrer EC, Goldberg DE, King AE (2010) Time lags and the balance of positive and negative interactions in driving grassland community dynamics. Am Nat 175:160–173. doi:10.1086/649584

    Article  PubMed  Google Scholar 

  • Harley CDG, Bertness MD (1996) Structural interdependence: an ecological consequence of morphological responses to crowding in marsh plants. Funct Ecol 10:654–661

    Article  Google Scholar 

  • Healy MT, Zedler JB (2010) Setbacks in replacing Phalaris arundinacea monotypes with sedge meadow vegetation. Rest Ecol 18:155–164. doi:10.1111/j.1526-100X.2009.00645.x

    Article  Google Scholar 

  • Holbrook NM, Putz FE (1989) Influence of neighbors on tree form: effect of lateral shade and prevention of sway on the allometry of Liquidambar styraciflua (Sweet Gum). Am J Bot 76:1740–1749

    Article  Google Scholar 

  • Levine JM, Vila M, D’Antonio CM, Dukes JS, Grigulis K, Lavorel S (2003) Mechanisms underlying the impacts of exotic plant invasions. Proc Biol Sci 270:775–781. doi:10.1098/rspb.2003.2327

    Article  PubMed  Google Scholar 

  • Levine JM, Pachepsky E, Kendall BE, Yelenik SG, HilleRisLambers J (2006) Plant-soil feedbacks and invasive spread. Ecol Lett 9:1005–1014. doi:10.1111/j.1461-0248.2006.00949.x

    Article  PubMed  Google Scholar 

  • MacDougall AS, Turkington R (2005) Are invasive species the drivers or passengers of change in degraded ecosystems? Ecology 86:42–55. doi:10.1890/04-0669

    Article  Google Scholar 

  • MacDougall AS, Gilbert B, Levine JM (2009) Plant invasions and the niche. J Ecol 97:609–615. doi:10.1111/j.1365-2745.2009.01515.x

    Article  Google Scholar 

  • Maron JL, Jefferies RL (2001) Restoring enriched grasslands: effects of mowing on species richness, productivity and nitrogen retention. Ecol Appl 11:1088–1100

    Article  Google Scholar 

  • Marushia RG, Holt JS (2008) Reproductive strategy of an invasive thistle: effects of adults on seedling survival. Biol Inv 10:913–924. doi:10.1007/s10530-008-9234-1

    Article  Google Scholar 

  • Maurer DA, Zedler JB (2002) Differential invasion of a wetland grass explained by tests of nutrients and light availability on establishment and clonal growth. Oecologia 131:279–288. doi:10.1007/s00442-002-0886-8

    Article  Google Scholar 

  • Minchinton TE (2002) Disturbance by wrack facilitates the spread of Phragmites australis in a coastal marsh. J Exp Mar Bio Ecol 281:89–107

    Article  Google Scholar 

  • Minchinton TE, Bertness MD (2003) Disturbance-mediated competition and the spread of Phragmites australis in a coastal marsh. Ecol Appl 13:1400–1416. doi:10.1890/02-5136

    Article  Google Scholar 

  • Minchinton TE, Simpson JC, Bertness MD (2006) Mechanisms of exclusion of native coastal marsh plants by an invasive grass. J Ecol 94:342–354. doi:10.1016/j.aquabot.2006.01.007

    Article  Google Scholar 

  • Mozdzer TJ, Zieman JC (2010) Ecophysiological differences between genetic lineages facilitate the invasion of non-native Phragmites australis in North American Atlantic coast wetlands. J Ecol 98:451–458. doi:10.1111/j.1365-2745.2009.01625.x

    Article  Google Scholar 

  • Quinn GP, Keogh MJ (2002) Experimental design and data analysis for biologists. Cambridge University, Cambridge, UK

    Google Scholar 

  • Quinn LD, Rauterkus MA, Holt JS (2007) Effects of nitrogen enrichment and competition on growth and spread of giant reed (Arundo donax). Weed Sci 53:319–326. doi:10.1614/WS-06-139.1

    Article  Google Scholar 

  • Saltonstall K (2002) Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. Proc Natl Acad Sci USA 99:2445–2449. doi:10.1073/pnas.032477999

    Article  CAS  PubMed  Google Scholar 

  • Seabloom EW, Harpole WS, Reichman OJ, Tilman D (2003) Invasion, competitive dominance, and resource use by exotic and native California grassland species. Proc Natl Acad Sci 100:13384–13389. doi:10.1073/pnas.1835728100

    Article  CAS  PubMed  Google Scholar 

  • Silliman BR, Bertness MD (2004) Shoreline development drives invasion of Phragmites australis and the loss of plant diversity in New England salt marshes. Conserv Biol 18:1424–1434. doi:10.1111/j.1523-1739.2004.00112.x

    Article  Google Scholar 

  • Tewksbury L, Casagrande R, Blossey B, Hafliger P, Schwarzlander M (2002) Potential for biological control of Phragmites australis in North America. Biol Control 23:191–212. doi:10.1006/bcon.2001.0994

    Article  Google Scholar 

  • Tilman D, Wedin D (1991) Oscillations and chaos in the dynamics of a perennial grass. Nature 353:653–655. doi:10.1035/353653a0

    Article  Google Scholar 

  • Warren RS, Fell PE, Grimsby JL, Buck EL, Rilling GC, Fertik RA (2001) Rates, patterns, and impacts of Phragmites australis expansion and effects of experimental Phragmites control on vegetation, macroinvertebrates and fish within tidelands of the lower Connecticut River. Estuaries 24:90–107. doi:10.2307/1352816

    Article  Google Scholar 

  • Windham L (2000) Comparison of biomass production and decomposition between Phragmites australis (Common reed) and Spartina patens (salt hay grass) in brackish tidal marshes of New Jersey, USA. Wetlands 21:179–188

    Article  Google Scholar 

  • Windham L, Ehrenfeld JG (2003) Net impact of a plant invasion on nitrogen-cycling processes within a brackish tidal marsh. Ecol Appl 13:883–896

    Article  Google Scholar 

  • Windham L, Lathrop RG (1999) Effects of Phragmites australis (Common reed) invasion on aboveground biomass and soil properties in brackish tidal marsh of the Mullica River, New Jersey. Estuaries 22:927–935

    Article  Google Scholar 

  • Woo I, Zedler JB (2002) Can nutrients alone shift a sedge meadow towards dominance by the invasive Typha x glauca. Wetlands 22:509–521. doi:10.1672/0277-5212(2002)022[0509:CNASAS]2.0.CO;2

    Article  Google Scholar 

  • Zedler JB, Kercher S (2004) Causes and consequences of invasive plants in wetlands: opportunities, opportunists and outcomes. Crit Rev Plant Sci 23:431–452. doi:10.1016/j.aquabot.2004.08.003

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank T. Savage, N. Herrmann and M. K. Lane for assistance in the field, J. Griffin, B. Bolker and B. R. Silliman for comments on the manuscript, and the Brown Undergraduate Teaching and Research Award program and RI Sea Grant for funding support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Holdredge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holdredge, C., Bertness, M.D. Litter legacy increases the competitive advantage of invasive Phragmites australis in New England wetlands. Biol Invasions 13, 423–433 (2011). https://doi.org/10.1007/s10530-010-9836-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-010-9836-2

Keywords

Navigation