Skip to main content

Advertisement

Log in

Allelopathy and plant invasions: traditional, congeneric, and bio-geographical approaches

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

A relatively small subset of exotic plant species competitively exclude their neighbors in invaded “recipient” communities but coexist with neighbors in their native habitat. Allelopathy has been argued as one of the mechanisms by which such exotics may become successful invaders. Three approaches have been used to examine allelopathy as a mechanism for invasion. The traditional approach examines exotic invasives in the same way that other native plants also suspected of allelopathic activities are studied. In this approach dose, fate, and replenishment of chemicals can provide powerful evidence for allelopathic processes. The bio-geographical approach often does not provide as much mechanistic evidence for allelopathy, but comparing the allelopathic effects of exotic invasives on species from their native and invaded communities yields stronger evidence than the traditional approach for whether or not allelopathy actually contributes to invasive success. The congeneric, or phylogenetic, approach involves comparative studies of exotic species with natives in the same genus or that are as closely related as possible. Congeneric approaches are limited in inference and have been used to study the role of natural enemies in exotic invasion, but this approach has not been widely used to study allelopathy and invasion. We discuss these three approaches and present a data set for congeneric Lantana and Prosopis to illustrate how the congeneric approach can be used, and use Centaurea maculosa and (±)-catechin to demonstrate experimentally how traditional and bio-geographic approaches can be integrated to shed light on allelopathy in exotic plant invasions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdul-Wahab AS, Rice EL (1967) Plant inhibition by Johnsongrass and its possible significance in old-field succession. Bull Torrey Bot Club 94:486–497

    Article  Google Scholar 

  • Achhireddy NR, Singh M (1984) Allelopathic effects of Lantana (Lantana camara) on milkweed vine (Morrenia odorata). Weed Sci 32:757–761

    Google Scholar 

  • Achhireddy NR, Singh M, Achhireddy LL, Nigg HN, Nagy S (1985) Isolation and partial characteristics of phytotoxic compounds from Lantana (Lantana camara). J Chem Ecol 11:979–988

    Article  CAS  Google Scholar 

  • Adetayo OB, Lawal OI, Alabi BS, Owolade OF (2005) Allelopathic effect of siam weed (Chromolaena odorata) on seed germination and seedling performance of selected crop and weed species. In: Proceedings of IV World Allelopathy Congress, Australia, pp 348–351

  • Agrawal AA, Kotanen PM (2003) Herbivores and the success of exotic plants: a phylogenetically controlled experiment. Ecol Lett 6:712–715

    Article  Google Scholar 

  • Bais HP, Walker TS, Stermitz FR, Hufbauer RA, Vivanco JM (2002) Enantiomeric-dependent phytotoxic and antimicrobial activity of (±)-catechin. A rhizosecreted racemic mixture from spotted knapweed. Plant Physiol 128:1173–1179

    Article  PubMed  CAS  Google Scholar 

  • Bais HP, Vepachedu R, Gilroy S, Callaway RM, Vivanco JM (2003) Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science 301:1377–1380

    Article  PubMed  CAS  Google Scholar 

  • Barney JN, Hay AG, Weston LA (2005) Isolation and characterization of allelopathic volatiles from mugwort (Artemisia vulgaris). J Chem Ecol 31:247–265

    Article  PubMed  CAS  Google Scholar 

  • Baruah NC, Sarma JC, Sarma S, Sharma RP (1994) Seed germination and growth inhibitory cadinenes from Eupatorium adenophorum Spreng. J Chem Ecol 20:1885–1892

    Article  CAS  Google Scholar 

  • Blair AC, Hanson BD, Brunk GR, Marrs RA, Westra P, Nissen SJ, Hufbauer RA (2005) New techniques and findings in the study of a candidate allelochemical implicated in invasion success. Ecol Lett 8:1039–1047

    Article  Google Scholar 

  • Blair AC, Nissen SJ, Brunk GR, Hufbauer RA (2006) A lack of evidence for an ecological role of the putative allelochemical (±)-catechin in spotted knapweed invasion success. J Chem Ecol 32:2327–2331

    Article  PubMed  CAS  Google Scholar 

  • Bousquet-Mélou A, Louis S, Robles C, Greff S, Dupouyet S, Fernandez C (2005) Allelopathic potential of Medicago arborea, a Mediterranean invasive shrub. Chemoecology 15:193–198

    Article  Google Scholar 

  • Buta JG, Lusby WR (1986) Catechins as germination and growth inhibitors in lespedeza seeds. Phytochemistry 25:93–95

    Article  CAS  Google Scholar 

  • Callaway RM, Aschehoug ET (2000) Invasive plant versus their new and old neighbors: a mechanism for exotic invasion. Science 290:521–523

    Article  PubMed  CAS  Google Scholar 

  • Callaway RM, Hierro JL (2005) Resistance and susceptibility of plant communities to invasion: revisiting Rabotnov’s ideas about community homeostasis. In: Reigosa MJ, Pedrol N, González L (eds) Allelopathy: a physiological process with ecological implications. Springer, The Netherlands, pp 395–414

    Google Scholar 

  • Callaway RM, Ridenour WM (2004) Novel weapons: invasive success and the evolution of increased competitive ability. Front Ecol Environ 2:436–443

    Article  Google Scholar 

  • Callaway RM, Thelen GC, Rodriguez A, Holben WE (2004a) Soil biota and exotic plant invasion. Nature 427:731–733

    Article  PubMed  CAS  Google Scholar 

  • Callaway RM, Thelen GC, Barth S, Ramsey PW, Gannon JE (2004b) Soil fungi alter interactions between the invader Centaurea maculosa and North American natives. Ecology 85:1062–1071

    Article  Google Scholar 

  • Callaway RM, Hierro JL, Thorpe AS (2005a) Evolutionary trajectories in plant and soil microbial communities: Centaurea invasions and the geographic mosaic of coevolution. In: Sax DF, Gaines SD, Stachowicz JJ (eds) Exotic species invasions: insights into ecology, evolution and biogeography. Sinauer, Sunderland, pp 341–363

    Google Scholar 

  • Callaway RM, Ridenour WM, Laboski T, Weir T, Vivanco JM (2005b) Natural selection for resistance to the allelopathic effects of invasive plants. J Ecol 93:576–583

    Article  Google Scholar 

  • Callaway RM, Cipollini D, Barto K, Thelen GC, Hallett SG, Prati D, Stinson K, Klironomos J (in press) Novel weapons: invasive plant suppresses fungal mutualists in America but not in its native Europe. Ecology

  • Cappuccino N, Carpenter D (2005) Invasive exotic plants suffer less herbivory than non-invasive plants. Biol Lett 1:435–438

    Article  PubMed  Google Scholar 

  • Cappuccino N, Arnason JT (2006) Novel chemistry of invasive exotic plants. Biol Lett 2:189–193

    Article  PubMed  CAS  Google Scholar 

  • Carey EV, Marler MJ, Callaway RM (2004) Mycorrhizae transfer carbon from a native grass to an invasive weed: evidence from stable isotopes and physiology. Plant Ecol 172:133–141

    Article  Google Scholar 

  • Carpenter D, Cappuccino N (2005) Herbivory, time since introduction and the invasiveness of exotic plants. J Ecol 93:315–321

    Article  Google Scholar 

  • Chapuis-Lardy L, Vanderhoeven S, Dassonville N, Koutika LS, Meerts P (2006) Effect of the exotic invasive plant Solidago gigantea on soil phosphorus status. Biol Fertil Soils 42:481–489

    Article  Google Scholar 

  • D’Abrosca B, Dellagreca M, Fiorention A, Isidori M, Monaco P, Pacifico S (2006) Chemical constituents of the aquatic plant Schoenoplectus lacustris: evaluation of phytotoxic effects on the green alga Selenatrum capricornutum. J Chem Ecol 32:81–96

    Article  PubMed  CAS  Google Scholar 

  • Dayama DP (1986) Allelopathic potential of Parthenium hysterophorus Linn. on growth, nodulation and nitrogen content of Leucaena leucocephala. Leucaena Res Rep 7:36–37

    Google Scholar 

  • El-Ghareeb RM (1991) Suppression of annuals by Tribulus terrestris in an abandoned field in the sandy desert of Kuwait. J Veg Sci 2:147–154

    Article  Google Scholar 

  • El-Keblawy A, Al-Rawai A (2007) Impacts of the invasive exotic Prosopis juliflora (Sw.) D.C. on the native flora and soils of the UAE. Plant Ecol 190:23–35

    Article  Google Scholar 

  • Evans HC (1997) Parthenium hysterophorus: a review of its weed status and the possibilities for biological control. Biocontrol 18:389N–398N

    Google Scholar 

  • Furubayashi A, Hiradate S, Fujii Y (2007) Role of catechol structure in the adsorption and transformation reactions of l-dopa in soils. J Chem Ecol 33:239–250

    Article  PubMed  CAS  Google Scholar 

  • Gentle CB, Duggin JA (1997) Allelopathy as a comparative strategy in persistent thickets of Lantana camara L. in three Australian forest communities. Plant Ecol 132:85–95

    Article  Google Scholar 

  • Goel U, Saxena DB, Kumar B (1989) Comparative study of allelopathy as exhibited by Prosopis juliflora Swartz and Prosopis cineraria (L.) Druce. J Chem Ecol 15:591–600

    Article  Google Scholar 

  • Hierro JL, Callaway RM (2003) Allelopathy and exotic plant invasion. Plant Soil 256:29–39

    Article  CAS  Google Scholar 

  • Hierro JL, Maron JL, Callaway RM (2005) A biogeographical approach to plant invasions: the importance of studying exotics in their introduced and native range. J Ecol 93:5–15

    Article  Google Scholar 

  • Inderjit (1998) Influence of Pluchea lanceolata (Asteraceae) on selected soil properties. Am J Bot 85:64–69

    Article  Google Scholar 

  • Inderjit (2001) Soils: environmental effect on allelochemical activity. Agron J 93:79–84

    CAS  Google Scholar 

  • Inderjit (2005) Soil microorganisms: an important determinant of allelopathic activity. Plant Soil 274:227–236

    Article  CAS  Google Scholar 

  • Inderjit (2006) Experimental complexities in evaluating the allelopathic activities in laboratory bioassays: a case study. Soil Biol Biochem 38:256–262

    CAS  Google Scholar 

  • Inderjit, Callaway RM (2003) Experimental designs for the study of allelopathy. Plant Soil 256:1–11

    Article  CAS  Google Scholar 

  • Inderjit, Foy CL (1999) Nature of the interference mechanism of mugwort (Artemisia vulgaris). Weed Technol 13:176–182

    Google Scholar 

  • Inderjit, Nilsen ET (2003) Bioassays and field studies for allelopathy in terrestrial plants: progress and problems. Crit Rev Plant Sci 22:221–238

    Article  Google Scholar 

  • Inderjit, Weiner J (2001) Plant allelochemical interference or soil chemical ecology? Perspect Plant Ecol Evol Syst 4:4–12

    Google Scholar 

  • Inderjit, Cadotte M, Colautti RI (2005) The ecology of biological invasions: past, present and future. In: Inderjit (ed) Invasive plants: ecological and agricultural aspects. Birkhauser-Verlag AG, Basal, pp 19–44

    Chapter  Google Scholar 

  • Inderjit, Callaway RC, Vivanco JM (2006) Plant biochemistry helps to understand invasion ecology. Trends Plant Sci 11:574–580

    Article  PubMed  CAS  Google Scholar 

  • Iqbal Z, Hiradate S, Noda A, Isojima S, Fujii Y (2003) Allelopathic activity of buckwheat: isolation and characterization of phenolics. Weed Sci 51:657–662

    Article  CAS  Google Scholar 

  • Jarvis BB, Pena NB, Rao MM, Coumlaut NS, Coumbut TF, Mandava NB (1985) Allelopathic agents from Parthenium hysterophorus and Baccharis megapotamica. In: Thompson AC (ed) The Chemistry of allelopathy. American Chemical Society, Washington, pp 149–159

    Google Scholar 

  • Kanchan SD, Jayachandra (1979) Allelopathic effects of Parthenium hysterophorus L. I. Exudation of inhibitors through roots. Plant Soil 53:27–35

    Article  Google Scholar 

  • Kanchan SD, Jayachandra (1980) Pollen allelopathy—a new phenomenon. New Phytol 84:739–746

    Article  Google Scholar 

  • Karban R (2007) Experimental clipping of sagebrush inhibits seed germination of neighbors. Ecol Lett 10:791–797

    Article  PubMed  Google Scholar 

  • Kong CH, Wang P, Zhang CX, Zhang MX, Hu F (2006) Herbicidal potential of allelochemicals from Lantana camara against Eichhornia crassipes and the alga Microcystis aeruginosa. Weed Res 46:290–295

    Article  CAS  Google Scholar 

  • LeJeune KD, Seastedt TR (2001) Centaurea species: the Forb that won the west. Conserv Biol 15:1568–1574

    Article  Google Scholar 

  • Lortie CJ, Brooker RW, Choler P, Kikvidze Z, Michalet R, Pugnaire FI, Callaway RM (2004) Rethinking plant community theory. Oikos 107:433–438

    Article  Google Scholar 

  • Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz FA (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10:689–710

    Article  Google Scholar 

  • Mahall BE, Callaway RM (1992) Root communication mechanisms and intracommunity distributions of two Mojave desert shrubs. Ecology 73:2145–2151

    Article  Google Scholar 

  • Mallik AU, Pellissier F (2000) Effects of Vaccinium myrtillus on spruce regeneration: testing the notion of coevolutionary significance of allelopathy. J Chem Ecol 26:2197–2209

    Article  CAS  Google Scholar 

  • Mangla S, Inderjit, Callaway RM (2008) Exotic invasive plant accumulates soil pathogens which inhibit native plants. J Ecol 96:58–67

    Google Scholar 

  • Marler MJ, Zabinski CA, Wojtowicz T, Callaway RM (1999) Mycorrhizae and fine root dynamics of Centaurea maculosa and native bunchgrasses in western Montana. Northwest Sci 73:217–224

    Google Scholar 

  • Meekins JF, McCarthy BC (1999) Comparative ability of Alliaria petiolata (garlic mustard, Brassicaceae), an invasive nonindigenous forest herb. Int J Plant Sci 160:743–752

    Article  Google Scholar 

  • Mitchell CE, Agrawal AA, Bever JD, Gilbert GS, Hufbauer RA, Klironomos JN, Maron JL, Morris WF, Parker IM, Power AG, Seabloom EW, Torchin ME, Vázquez DP (2006) Biotic interactions and plant invasions. Ecol Lett 9:726–740

    Article  PubMed  Google Scholar 

  • Müller-Schärer H, Schroeder D (1993) The biological control of Centaurea spp. in North America: do insects solve the problem? Pestic Sci 37:343–353

    Article  Google Scholar 

  • Myers JH (2004) A silver bullet in the biological control of diffuse knapweed. ESA 2004 Annual meeting abstract. http://www.abstracts.co.allenpress.com/pweb/esa2004. Accessed 11/05/05

  • Nakano H, Fujii Y, Suzuki T, Yamada K, Kosemura S, Yamamura S, Suzuki T, Hasegawa K (2001) A growth-inhibitory substance exuded from freeze-dried mesquite (Prosopis juliflora (Sw.) DC.) leaves. Plant Growth Regul 33:165–168

    Article  CAS  Google Scholar 

  • Nakano H, Fujii Y, Yamada K, Kosemura S, Yamamura S, Hasegawa K, Suzuki T (2002) Isolation and identification of plant growth inhibitors as candidate(s) for allelopathic substance(s), from aqueous leachate from mesquite (Prosopis juliflora (Sw.) DC.) leaves. Plant Growth Regul 37:113–117

    Article  CAS  Google Scholar 

  • Nakano H, Nakajima E, Fujii Y, Yamada K, Shigemori H, Hasegawa K (2003) Leaching of the allelopathic substance, l-tryptophan from the foliage of mesquite (Prosopis juliflora (Sw.) DC.) plants by water spraying. Plant Growth Regul 40:49–52

    Article  CAS  Google Scholar 

  • Norton AP, Blair AC, Hardi JG, Nissen SJ, Brunk GR (2008) Herbivory and novel weapons: no evidence for enhanced competitive ability or allelopathy induction of Centaurea diffusa by biological controls. Biol Invasions 10:79–88

    Article  Google Scholar 

  • Nuzzo V (1999) Invasion pattern of the herb garlic mustard (Alliaria petiolata) in high quality forests. Biol Invasions 1:169–179

    Article  Google Scholar 

  • Onwugbuta EJ (2001) Allelopathic effects of Chromolaena odorata L. (R.M. King and Robinson—(Awolowo Plant’)) toxin on tomatoes (Lycopersicum esculentum Mill). J Appl Sci Environ Manage 5:69–73

    Google Scholar 

  • Perry LG, Johnson C, Alford ÉR, Vivanco JM, Paschke MW (2005a) Screening of grassland plants for restoration after spotted knapweed invasion. Restor Ecol 13:725–735

    Article  Google Scholar 

  • Perry LG, Thelen GC, Ridenour WM, Weir TL, Callaway RM, Paschke MW, Vivanco JM (2005b) Dual role for an allelochemical: (±)-catechin from Centaurea maculosa root exudates regulates conspecific seedling establishment. J Ecol 93:1126–1135

    Article  CAS  Google Scholar 

  • Perry LG, Thelen GC, Ridenour WM, Callaway RM, Paschke MW, Vivanco JM (2007) Concentrations of the allelochemical (±)-catechin in Centaurea maculosa soils. J Chem Ecol 33:2337–2344

    Article  PubMed  CAS  Google Scholar 

  • Pisutthanan N, Liawruangrath B, Liawruangrath S, Bremner JB (2006) A new flavonoid from Chromolaena odorata. Nat Prod Res 20:1192–1198

    Article  PubMed  CAS  Google Scholar 

  • Prati D, Bossdorf O (2004) Allelopathic inhibition of germination by Alliaria petiolata (Brassicaceae). Am J Bot 91:285–288

    Article  Google Scholar 

  • Preston CA, Betts H, Baldwin IT (2002) Methyl jasmonate as an allelopathic agent: sagebrush inhibits germination of a neighboring tobacco, Nicotiana attenuata. J Chem Ecol 28:2343–2369

    Article  PubMed  CAS  Google Scholar 

  • Rabotnov TA (1982) Importance of the evolutionary approach to the study of allelopathy. Ékologia, May–June(3):5–8 (translated from Russian)

  • Ridenour WM, Callaway RM (2001) The relative importance of allelopathy in interference: the effects of an invasive weed on a native bunchgrass. Oecologia 126:444–450

    Article  Google Scholar 

  • Ridenour WM, Vivanco JM, Feng Y, Horiuchi J, Callaway RM (in press) No evidence for tradeoffs: Centaurea plants from America are better competitors and defenders than plants from the native range. Ecology

  • Rudrappa T, Bonsall J, Gallagher JL, Seliskar DM, Bais HP (2007) Root-secreted allelochemical in the noxious weed Phragmites australis deploys a reactive oxygen species response and microtubule assembly disruption to execute rhizotoxicity. J Chem Ecol 33:1898–1918

    Article  PubMed  CAS  Google Scholar 

  • Seastedt TR, Suding KN, LeJeune KD (2005) Understanding Invasions: the rise and fall of diffuse knapweed (Centaurea diffusa) in North America. In: Inderjit (ed) Invasive plants: ecological and agricultural aspects. Birkhauser-Verlag AG, Basal, pp 129–139

    Chapter  Google Scholar 

  • Seastedt TR, Garmoe M, Knochel D, Shosky S (2007) Interactions and effects of multiple biological control insects on diffuse and spotted knapweed in the Front Range of Colorado. Biol Control 42:345–354

    Article  Google Scholar 

  • Sharma R, Dakshini KMM (1998) Integration of plant and soil characteristics and the ecological success of two Prosopis species. Plant Ecol 139:63–69

    Article  Google Scholar 

  • Sharma GP, Raghubanshi AS, Singh JS (2005) Lantana invasion: an overview. Weed Biol Manag 5:157–163

    Article  Google Scholar 

  • Smith L (2004) Impact of biological control agents on diffuse knapweed in central Montana. In: Cullen JM, Briese DT, Kriticos DJ, Lonsdale WM, Morin L, Scott J (eds) XI international symposium on biological control of weeds. CSIRO Entomology, Canberra, Australia, pp 589–593

  • Sola NH, Juliani HR, Cabrera JL (1992) Determination of some soil components under Prosopis ruscifolia. Agrochimica 36:148–153

    CAS  Google Scholar 

  • Srivastava JN, Shukla JP, Srivastava RC (1985) Effect of Parthenium hysterophorus Linn. extract on seed germination and seedling growth of barley. Acta Bot Indica 13:194–197

    Google Scholar 

  • Stinson KA, Campbell SA, Powell JR, Wolfe BE, Callaway RM, Thelen GC, Hallett SG, Prati D, Klironomos JN (2006) Invasive plant suppresses the growth of native tree seedlings by disrupting belowground mutualisms. PLoS Biology 4: e 140. doi:10.1371/Journal.pbio.0040140

  • Stinson K, Kaufman S, Durbin L, Lowenstein F (2007) Impacts of garlic mustard invasion on a forest understory community. NENA (in press)

  • Story JM, Good WR, White LJ, Smith L (2000) Effects of the interaction of the biocontrolagent, Agapeta zoegana L. (Lepidoptera: Cochylidae), and grass competition on spotted knapweed. Biol Control 17:182–190

    Article  Google Scholar 

  • Story JM, Callan NW, Corn JG, White LJ (2006) Decline of spotted knapweed density at two sites in western Montana with large populations of the introduced root weevil, Cyphocleonus achates (Fahraeus). Biol Control 38:227–232

    Article  Google Scholar 

  • Swain T, Hillis WE (1959) The phenolic constituents of Prunus domestica L-the quantitative analysis of phenolic constituents. J Sci Food Agric 10:63–68

    Article  CAS  Google Scholar 

  • Thelen GC, Vivanco JM, Newingham B, Good W, Bais HP, Landres P, Caesar A, Callaway RM (2005) Insect herbivory stimulates allelopathic exudation by an invasive plant and the suppression of natives. Ecol Lett 8:209–217

    Article  Google Scholar 

  • Thorpe A (2006) Biochemical effects of Centaurea maculosa on soil nutrient cycles and plant communities. PhD Dissertation, University of Montana, Missoula, USA

  • Thorpe AS, Archer V, Deluca TH (2006) The invasive forb, Centaurea maculosa, increases phosphorus availability in Montana grasslands. Appl Soil Ecol 32:118–122

    Article  Google Scholar 

  • Vivanco JM, Bais HP, Stermitz FR, Thelen GC, Callaway RM (2004) Biogeographical variation in community response to root allelochemistry: novel weapons and exotic invasion. Ecol Lett 7:285–292

    Article  Google Scholar 

  • Weidenhamer J, Romeo J (2004) Allelochemicals of Polygonella myriophylla: chemistry and soil degradation. J Chem Ecol 30:1067–1082

    Article  PubMed  CAS  Google Scholar 

  • Weidenhamer JD, Hartnett DC, Romeo JT (1989) Density-dependent phytotoxicity: distinguishing resource competition and allelopathic interference in plants. J Appl Ecol 26:613–624

    Article  CAS  Google Scholar 

  • Weir TL, Bais HP, Vivanco JM (2003) Intraspecific and interspecific interactions mediated by a phytotoxin (−)-catechin, secreted by the roots of Centaurea maculosa (spotted knapweed). J Chem Ecol 29:2397–2412

    Article  PubMed  CAS  Google Scholar 

  • Weir TL, Park S-W, Vivanco JM (2004) Biochemical and physiological mechanisms mediated by allelochemicals. Curr Opin Plant Biol 7:472–479

    Article  PubMed  CAS  Google Scholar 

  • Williamson M (1996) Biological invasions. Chapman & Hall, London

    Google Scholar 

  • Yang X, Owens TG, Scheffler BE, Weston A (2004) Manipulation of root hair development and sorgoleone production in sorghum seedlings. J Chem Ecol 30:199–213

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Inderjit’s research is funded by the Ministry of Environment & Forests (MoEF) and Council of Scientific & Industrial Research (CSIR). We thank Naomi Cappuccino, Leslie Weston, and Anne Osbourn for their critical evaluation. RMC thanks the DoD SERDP for support while TRS acknowledges funding from USDA CSREES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inderjit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inderjit, Seastedt, T.R., Callaway, R.M. et al. Allelopathy and plant invasions: traditional, congeneric, and bio-geographical approaches. Biol Invasions 10, 875–890 (2008). https://doi.org/10.1007/s10530-008-9239-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-008-9239-9

Keywords

Navigation