Skip to main content

Advertisement

Log in

Pharmacological and pharmacokinetic properties of lanthipeptides undergoing clinical studies

  • REVIEW
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

An Erratum to this article was published on 02 February 2017

Abstract

The intrinsic qualities of lanthipeptides for their use as therapeutic drugs present several challenges because of their properties, which include stability, solubility and bioavailability, which, under physiological conditions, are very low. Researches have encouraged clinical evaluation of a few compounds, such as mutacin 1140, microbisporicin, actagardine and duramycin, with pharmacokinetic profiles showing rapid distribution and elimination rates, good bioavailability and fecal excretion, as well as high protein binding. Local and parenteral administration are currently suitable to minimize environmental influences on lanthipeptides and ensure efficient activity. Nevertheless, valuable improvements on pharmacodynamic and pharmacokinetic properties may also permit systemic applications via enteral routes. Understanding how rational modifications influence the desired pharmacological and pharmacokinetic properties of these biomolecules would help to answer some specific questions about their susceptibility to environmental changes, mechanism of action and how to engineer other peptides of the same group to improve their clinical relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bierbaum G, Szekat C, Josten M, Heidrich C, Kempter C, Jung G, Sahl H-G (1996) Engineering of a novel thioether bridge and role of modified residues in the lantibiotic Pep5. Appl Environ Microbiol 62:385–392

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boakes S, Appleyard AN, Cortés J, Dawson MJ (2010) Organization of the biosynthetic genes encoding deoxyactagardine B (DAB), a new lantibiotic produced by Actinoplanes liguriae NCIMB41362. J Antibiot 63:351–358

    Article  CAS  PubMed  Google Scholar 

  • Boakes S, Weiss WJ, Vinson M, Wadman S, Dawson MJ (2016) Antibacterial activity of the novel semisynthetic lantibiotic NVB333 in vitro and in experimental infection models. J Antibiot 69:850–857

    Article  CAS  PubMed  Google Scholar 

  • Bonelli RR, Schneider T, Sahl H-G, Wiedemann I (2006) Insights into in vivo activities of lantibiotics from gallidermin and epidermin mode-of-action studies. Antimicrob Agents Chemother 50:1449–1457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brötz H, Bierbaum G, Leopold K, Reynolds PE, Sahl H-G (1998) The lantibiotic mersacidin inhibits peptidoglycan synthesis by targeting lipid II. Antimicrob Agents Chemother 42:154–160

    PubMed  PubMed Central  Google Scholar 

  • Castiglione F, Cavaletti L, Losi D, Lazzarini A, Carrano L, Feroggio M, Ciciliato I, Corti E, Candiani G, Marinelli F (2007) A novel lantibiotic acting on bacterial cell wall synthesis produced by the uncommon actinomycete Planomonospora sp. Biochemistry 46:5884–5895

    Article  CAS  PubMed  Google Scholar 

  • Castiglione F, Lazzarini A, Carrano L, Corti E et al (2008) Determining the structure and mode of action of microbisporicin, a potent lantibiotic active against multiresistant pathogens. Chem Biol 15:22–31

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee C, Paul M, Xie L, van der Donk WA (2005) Biosynthesis and mode of action of lantibiotics. Chem Rev 105:633–684

    Article  CAS  PubMed  Google Scholar 

  • Cloutier MM, Guernsey L, Mattes P, Koeppen B (1990) Duramycin enhances chloride secretion in airway epithelium. Am J Physiol 259:C450–C454

    CAS  PubMed  Google Scholar 

  • Coronelli C, Tamoni G, Lancini G (1976) Gardimycin, a new antibiotic from Actinoplanes. II. Isolation and preliminary characterization. J Antibiot 29:507–510

    Article  CAS  PubMed  Google Scholar 

  • Craik DJ, Fairlie DP, Liras S, Price D (2013) The future of peptide-based drugs. Chem Biol Drug Des 81:136–147

    Article  CAS  PubMed  Google Scholar 

  • Crowther GS, Baines SD, Todhunter SL, Freeman J, Chilton CH, Wilcox MH (2013) Evaluation of NVB302 versus vancomycin activity in an in vitro human gut model of Clostridium difficile infection. J Antimicrob Chemother 68:168–176

    Article  CAS  PubMed  Google Scholar 

  • Cruz JCS, Iorio M, Monciardini P, Simone M, Brunati C, Gaspari E, Maffioli SI, Wellington E, Sosio M, Donadio S (2015) Brominated variant of the lantibiotic NAI-107 with enhanced antibacterial potency. J Nat Prod 78:2642–2647

    Article  CAS  PubMed  Google Scholar 

  • Cymer F, von Heijne G, White SH (2015) Mechanisms of integral membrane protein insertion and folding. J Mol Biol 427:999–1022

    Article  CAS  PubMed  Google Scholar 

  • Czaplewski L, Bax R, Clokie M, Dawson M, Fairhead H, Fischetti VA, Foster S, Gilmore BF, Hancock RE, Harper D (2016) Alternatives to antibiotics—a pipeline portfolio review. Lancet Infect Dis 16:239–251

    Article  CAS  PubMed  Google Scholar 

  • Dawson MJ, Scott RW (2012) New horizons for host defense peptides and lantibiotics. Curr Opin Pharmacol 12:545–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dawson MJ, Appleyard AN, Bargallo JC, Wadman SN (2015) Actagardine derivatives, and pharmaceutical use thereof. World Patent WO 2010082019A1

  • Demain AL, Sanchez S (2009) Microbial drug discovery: 80 years of progress. J Antibiot 62:5–16

    Article  CAS  PubMed  Google Scholar 

  • Dischinger J, Josten M, Szekat C, Sahl HG, Bierbaum G (2009) Production of the novel two-peptide lantibiotic lichenicidin by Bacillus licheniformis DSM 13. PLoS ONE 4:e6788

    Article  PubMed  PubMed Central  Google Scholar 

  • Dischinger J, Basi Chipalu S, Bierbaum G (2014) Lantibiotics: promising candidates for future applications in health care. Int J Med Microbiol 304:51–62

    Article  CAS  PubMed  Google Scholar 

  • Dobson A, O’Connor P, Cotter P, Ross R, Hill C (2011) Impact of the broad-spectrum antimicrobial peptide, lacticin 3147, on Streptococcus mutans growing in a biofilm and in human saliva. J Appl Microbiol 111:1515–1523

    Article  CAS  PubMed  Google Scholar 

  • Fernández L, Delgado S, Herrero H, Maldonado A, Rodríguez JM (2008) The bacteriocin nisin, an effective agent for the treatment of Staphylococcal mastitis during lactation. J Hum Lact 24:311–316

    Article  PubMed  Google Scholar 

  • Field D, Cotter PD, Hill C, Ross R (2015) Bioengineering lantibiotics for therapeutic success. Front Microbiol 6

  • Fosgerau K, Hoffmann T (2015) Peptide therapeutics: current status and future directions. Drug Discov Today 20:122–128

    Article  CAS  PubMed  Google Scholar 

  • Ghobrial OG, Derendorf H, Hillman JD (2009) Pharmacodynamic activity of the lantibiotic MU1140. Int J Antimicrob Agents 33:70–74

    Article  CAS  PubMed  Google Scholar 

  • Ghobrial O, Derendorf H, Hillman JD (2010a) Human serum binding and its effect on the pharmacodynamics of the lantibiotic MU1140. Eur J Pharm Sci 41:658–664

    Article  CAS  PubMed  Google Scholar 

  • Ghobrial O, Derendorf H, Hillman JD (2010b) Pharmacokinetic and pharmacodynamic evaluation of the lantibiotic MU1140. J Pharm Sci 99:2521–2528

    Article  CAS  PubMed  Google Scholar 

  • Grasemann H, Stehling F, Brunar H, Widmann R, Laliberte TW, Molina L, Doring G, Ratjen F (2007) Inhalation of Moli 1901 in patients with cystic fibrosis. Chest 131:1461–1466

    Article  CAS  PubMed  Google Scholar 

  • Hancock RE, Sahl H-G (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24:1551–1557

    Article  CAS  PubMed  Google Scholar 

  • Heunis TD, Smith C, Dicks LM (2013) Evaluation of a nisin-eluting nanofiber scaffold to treat Staphylococcus aureus-induced skin infections in mice. Antimicrob Agents Chemother 57:3928–3935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hillman JD, Johnson KP, Yaphe BI (1984) Isolation of a Streptococcus mutans strain producing a novel bacteriocin. Infect Immun 44:141–144

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hillman J, Novák J, Sagura E, Gutierrez JA, Brooks T, Crowley PJ, Hess M, Azizi A, Leung K-P, Cvitkovitch D (1998) Genetic and biochemical analysis of mutacin 1140, a lantibiotic from Streptococcus mutans. Infect Immun 66:2743–2749

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hillman J, Mo J, McDonell E, Cvitkovitch D, Hillman C (2007) Modification of an effector strain for replacement therapy of dental caries to enable clinical safety trials. J Appl Microbiol 102:1209–1219

    Article  CAS  PubMed  Google Scholar 

  • Iorio M, Sasso O, Maffioli SI, Bertorelli R, Monciardini P, Sosio M, Bonezzi F, Summa M, Brunati C, Bordoni R (2013) A glycosylated, labionin-containing lanthipeptide with marked antinociceptive activity. ACS Chem Biol 9:398–404

    Article  PubMed  Google Scholar 

  • Jabés D, Brunati C, Candiani G, Riva S, Romanó G, Donadio S (2011) Efficacy of the new lantibiotic NAI-107 in experimental infections induced by multidrug-resistant Gram-positive pathogens. Antimicrob Agents Chemother 55:1671–1676

    Article  PubMed  PubMed Central  Google Scholar 

  • Kawakami T, Sasaki T, Reid PC, Murakami H (2014) Incorporation of electrically charged N-alkyl amino acids into ribosomally synthesized peptides via post-translational conversion. Chem Sci 5:887–893

    Article  CAS  Google Scholar 

  • Kester MB, Sokolove PM (1990) The effect of adriamycin and duramycin on calcium translocation in liposome systems modeled on the inner mitochondrial membrane. Arch Biochem Biophys 280:405–411

    Article  CAS  PubMed  Google Scholar 

  • Koopmans T, Wood TM, ’t Hart P, Kleijn LH, Hendrickx AP, Willems RJ, Breukink E, Martin NI (2015) Semisynthetic lipopeptides derived from nisin display antibacterial activity and lipid II binding on par with that of the parent compound. J Am Chem Soc 137:9382–9389

    Article  CAS  PubMed  Google Scholar 

  • Kupke T, Kempter C, Jung G, Gotz F (1995) Oxidative decarboxylation of peptides catalyzed by flavoprotein EpiD. Determination of substrate specificity using peptide libraries and neutral loss mass spectrometry. J Biol Chem 270:11282–11289

    Article  CAS  PubMed  Google Scholar 

  • Lepak AJ, Marchillo K, Craig WA, Andes DR (2015) In vivo pharmacokinetics and pharmacodynamics of the lantibiotic NAI-107 in a neutropenic murine thigh infection model. Antimicrob Agents Chemother 59:1258–1264

    Article  PubMed  PubMed Central  Google Scholar 

  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2012) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Del Rev 64:4–17

    Article  Google Scholar 

  • Maffioli SI, Iorio M, Sosio M, Monciardini P, Gaspari E, Donadio S (2014) Characterization of the congeners in the lantibiotic NAI-107 complex. J Nat Prod 77:79–84

    Article  CAS  PubMed  Google Scholar 

  • Malabarba A, Pallanza R, Berti M, Cavalleri B (1990) Synthesis and biological activity of some amide derivatives of the lantibiotic actagardine. J Antibiot 43:1089–1097

    Article  CAS  PubMed  Google Scholar 

  • McNulty MJ, Hutabarat RH, Findlay JW, Devereux K, Knick VC, Harvey RJ, Molina L (2003) Pharmacokinetics and tissue distribution of the nonadecapeptide Moli 1901 in rats and mice. Xenobiotica 33:197–210

    Article  CAS  PubMed  Google Scholar 

  • Meindl WR, Von Angerer E, Schoenenberger H, Ruckdeschel G (1984) Benzylamines: synthesis and evaluation of antimycobacterial properties. J Med Chem 27:1111–1118

    Article  CAS  PubMed  Google Scholar 

  • Molina y Vedia LM, Stutts MJ, Boucher RC Jr, Henke DC (1997) Method of treating retained pulmonary secretions. US Patent US 5683675 A

  • Münch D, Müller A, Schneider T, Kohl B, Wenzel M, Bandow JE, Maffioli S, Sosio M, Donadio S, Wimmer R (2014) The lantibiotic NAI-107 binds to bactoprenol-bound cell wall precursors and impairs membrane functions. J Biol Chem 289:12063–12076

    Article  PubMed  PubMed Central  Google Scholar 

  • Navarro J, Chabot J, Sherrill K, Aneja R, Zahler SA, Racker E (1985) Interaction of duramycin with artificial and natural membranes. Biochemistry 24:4645–4650

    Article  CAS  PubMed  Google Scholar 

  • Ongey EL, Neubauer P (2016) Lanthipeptides: chemical synthesis versus in vivo biosynthesis as tools for pharmaceutical production. Microb Cell Fact 15:97

    Article  PubMed  PubMed Central  Google Scholar 

  • Parenti F, Pagani H, Beretta G (1975) Lipiarmycin, a new antibiotic from Actinoplanes. I. Description of the producer strain and fermentation studies. J Antibiot 28:247–252

    Article  CAS  PubMed  Google Scholar 

  • Proft T (2009) Microbial toxins: current research and future trends. Poole

  • Rios AC, Moutinho CG, Pinto FC, Del Fiol FS, Jozala A, Chaud MV, Vila MM, Teixeira JA, Balcão VM (2016) Alternatives to overcoming bacterial resistances: state-of-the-art. Microbiol Res

  • Ross AC, McKinnie SM, Vederas JC (2012) The synthesis of active and stable diaminopimelate analogues of the lantibiotic peptide lactocin S. J Am Chem Soc 134:2008–2011

    Article  CAS  PubMed  Google Scholar 

  • Sandiford SK (2015) Perspectives on lantibiotic discovery—Where have we failed and what improvements are required? Exp Opin Drug Disc 10:315–320

    Article  CAS  Google Scholar 

  • Siodłak D (2015) α,β-Dehydroamino acids in naturally occurring peptides. Amino Acids 47:1–17

    Article  PubMed  Google Scholar 

  • Smith L, Hasper H, Breukink E, Novak J, Ji Čerkasov, Hillman J, Wilson-Stanford S, Orugunty RS (2008) Elucidation of the antimicrobial mechanism of mutacin 1140. Biochemistry 47:3308–3314

    Article  CAS  PubMed  Google Scholar 

  • Sosio M (2015) Lantibiotic production: technology, optimization and improved process. LAPTOP. http://www.jic.ac.uk/laptop/about.htm. Accessed 17 Dec 2015

  • Steiner I, Errhalt P, Kubesch K, Hubner M et al (2008) Pulmonary pharmacokinetics and safety of nebulized duramycin in healthy male volunteers. Naunyn Schmiedebergs Arch Pharmacol 378:323–333

    Article  CAS  PubMed  Google Scholar 

  • Sullivan M (2013) Oragenics–intrexon collaboration announces significant progress towards commercial production of lead lantibiotic MU1140. Oragenics, Inc. http://www.oragenics.com/?q=news. Accessed 11 Nov 2015

  • Sullivan M (2015) Oragenics reports positive in vivo antibiotic efficacy data in critical animal study. Oragenics, Inc. http://www.oragenics.com/?q=news. Accessed 11 Nov 2015

  • Turner S, Love R, Lyons K (2004) An in vitro investigation of the antibacterial effect of nisin in root canals and canal wall radicular dentine. Int Endod J 37:664–671

    Article  CAS  PubMed  Google Scholar 

  • van Heel AJ, Montalban-Lopez M, Kuipers OP (2011) Evaluating the feasibility of lantibiotics as an alternative therapy against bacterial infections in humans. Expert Opin Drug Metab Toxicol 7:675–680

    Article  PubMed  Google Scholar 

  • van Heel AJ, Kloosterman TG, Montalban-Lopez M, Deng J, Plat A, Baudu B, Hendriks D, Moll GN, Kuipers OP (2016) Discovery, production and modification of five novel lantibiotics using the promiscuous nisin modification machinery. ACS Synth Biol 5:1146–1154

    Article  PubMed  Google Scholar 

  • van Kraaij C, de Vos WM, Siezen RJ, Kuipers OP (1999) Lantibiotics: biosynthesis, mode of action and applications. Nat Prod Rep 16:575–587

    Article  PubMed  Google Scholar 

  • WHO (2014) Antimicrobial resistance: global report on surveillance 2014. WHO, Geneva

    Google Scholar 

  • Yuan J, Zhang Z-Z, Chen X-Z, Yang W, Huan L-D (2004) Site-directed mutagenesis of the hinge region of nisinZ and properties of nisinZ mutants. Appl Microbiol Biotechnol 64:806–815

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is part of the Cluster of Excellence “Unifying Concepts in Catalysis” coordinated by the Technische Universität Berlin and its graduate school, Berlin International Graduate School of Natural Sciences and Engineering (BIG-NSE). PN and OEL are thankful for the support of this program. OEL obtained a grant from the Graduate School Scholarship Programme of the German Academic Exchange Service (DAAD). Funding was provided by Deutsche Forschungsgemeinschaft (Grant No. EXC 314), Deutscher Akademischer Austauschdienst.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elvis Legala Ongey.

Additional information

The original version of this article was revised: corresponding authors name had been corrected.

An erratum to this article is available at http://dx.doi.org/10.1007/s10529-017-2288-3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ongey, E.L., Yassi, H., Pflugmacher, S. et al. Pharmacological and pharmacokinetic properties of lanthipeptides undergoing clinical studies. Biotechnol Lett 39, 473–482 (2017). https://doi.org/10.1007/s10529-016-2279-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-016-2279-9

Keywords

Navigation