Skip to main content
Log in

Long-term response on growth, antioxidant enzymes, and secondary metabolites in salicylic acid pre-treated Uncaria tomentosa microplants

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objective

To obtain micro propagated Uncaria tomentosa plantlets with enhanced secondary metabolites production, long-term responses to salicylic acid (SA) pre-treatments at 1 and 100 µM were evaluated after propagation of the plantlets in a SA-free medium.

Results

SA pre-treatments of single node cuttings OF U. tomentosa produced long-term responses in microplants grown for 75 days in a SA-free medium. Reduction in survival rate, root formation, and stem elongation were observed only with 100 µM SA pre-treatments with respect to the control (0 + DMSO).Both pre-treatments enhanced H2O2 and inhibited superoxide dismutase and catalase activities, while guaiacol peroxidase was increased only with 1 µM SA. Also, both pre-treatments increased total monoterpenoid oxindole alkaloids by ca. 55 % (16.5 mg g−1 DW), including isopteropodine, speciophylline, mitraphylline, isomitraphylline, rhynchopylline, and isorhynchopylline; and flavonoids by ca. 21 % (914 μg g−1 DW), whereas phenolic compounds were increased 80 % (599 μg g−1 DW) at 1 µM and 8.2 % (359 μg g−1 DW) at 100 µM SA.

Conclusion

Pre-treatment with 1 µM SA of U.tomentosa microplants preserved the survival rate and increased oxindole alkaloids, flavonoids, and phenolic compounds in correlation with H2O2 and peroxidase activity enhancements, offering biotechnological advantages over non-treated microplants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Ali MB, Hahn EJ, Paek KY (2007) Methyl jasmonate and salicylic acid induced oxidative stress and accumulation of phenolics in Panax ginseng bioreactor root suspension cultures. Molecules 12:607–621

    Article  CAS  PubMed  Google Scholar 

  • Chang CC, Yang M-H, Wen HM, Chern JC (2002) Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Anal 10:178–182

    CAS  Google Scholar 

  • Chao Y-Y, Chen C-Y, Huang W-D, Kao CH (2010) Salicylic acid mediated hydrogen peroxide accumulation and protection against Cd toxicity in rice leaves. Plant Soil 329:327–337

    Article  CAS  Google Scholar 

  • Chen Z, Silva H, Klessig DF (1993) Active oxygen species in the induction of plant systemic acquired resistance induced by salicylic acid. Science 262:1883–1886

    Article  CAS  PubMed  Google Scholar 

  • Cui J, Zhang R, Wu GL, Zhu HM, Yang H (2010) Salicylic acid reduces napropamide toxicity by preventing its accumulation in rape seed (Brassica napus L.). Arch Environ Contam Toxicol 59:100–108

    Article  CAS  PubMed  Google Scholar 

  • Denness L, McKenna JF, Segonzac C, Wormit A, Madhou P, Bennett M, Mansfield J, Zipfel C, Haman T (2011) Cell wall damage-induced lignin biosynthesis is regulated by a reactive oxygen species- and jasmonic acid-dependent process in Arabidopsis. Plant Physiol 156:1364–1374

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Desmarchelier C, Mongelli E, Coussio J, Ciccia G (1997) Evaluation of the in vitro antioxidant activity in extracts of Uncaria tomentosa (Willd) DC. Phytother Res 11:254–256

    Article  Google Scholar 

  • Dong J, Wan G, Liang Z (2010) Accumulation of salicylic acid-induced phenolic compounds and raised activities of secondary metabolic and antioxidative enzymes in Salvia miltiorrhiza cell culture. J Biotechnol 148:99–104

    Article  CAS  PubMed  Google Scholar 

  • Dunand C, Crevecoeur M, Penel C (2007) Distribution of superoxide and hydrogen peroxide in Arabidopsis root and their influence on root development: possible interaction with peroxidases. New Phytol 174:332–341

    Article  CAS  PubMed  Google Scholar 

  • Durner J, Klessig DF (1995) Inhibition of ascorbate peroxidase by salicylic acid and 2,6-dichloroisonicotinic acid, two inducers of plant defense responses. Proc Natl Acad Sci USA 92:11312–11316

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Durner J, Klessig DF (1996) Salicylic acid is a modulator of tobacco and mammalian catalases. J Biol Chem 272:28492–28501

    Article  Google Scholar 

  • El-Sayed M, Verpoorte R (2004) Growth, metabolic profiling and enzymes activities of Catharanthus roseus seedlings treated with plant growth regulators. Plant Growth Regul 44:53–58

    Article  CAS  Google Scholar 

  • Foreman J, Demidchik V, Bothwell JH, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JD, Davies JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446

    Article  CAS  PubMed  Google Scholar 

  • Franklin G, Dias AC (2011) Chlorogenic acid participates in the regulation of shoot, root and root hair development in Hypericum perforatum. Plant Physiol Biochem 49:835–842

    Article  CAS  PubMed  Google Scholar 

  • Fu AK, Hung KW, Huang H, Gu S, Shen Y, Cheng EY, Ip FC, Huang X, Fu WY, Ip NY (2014) Blockade of EphA4 signaling ameliorates hippocampal synaptic dysfunctions in mouse models of Alzheimer’s disease. Proc Natl Acad Sci USA 111:9959–9964

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gallego-Giraldo L, Escamilla-Trevino L, Jackson LA, Dixon RA (2011) Salicylic acid mediates the reduced growth of lignin down-regulated plants. Proc Natl Acad Sci USA 108:20814–20819

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol 59:309–314

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Heitzman MF, Neto CC, Winiarz E, Vaisberg AJ, Hammond GB (2005) Ethnobotany, phytochemistry and pharmacology of Uncaria (Rubiaceae). Phytochem 66:5–29

    Article  CAS  Google Scholar 

  • Huerta-Heredia AA, Marín-López R, Ponce-Noyola T, Cerda-García-Rojas CM, Trejo-Tapia G, Ramos-Valdivia AC (2009) Oxidative stress induces alkaloid production in Uncaria tomentosa root and cell cultures in bioreactors. Eng Life Sci 9:211–218

    Article  CAS  Google Scholar 

  • Kim YH, Hamayun M, Khan AL, Na CI, Kang SM, Han HH, Lee IJ (2009) Exogenous application of plant growth regulators increased the total flavonoid content in Taraxacum officinale (Wigg). Afr J Biotechnol 8:5727–5732

    CAS  Google Scholar 

  • Laus G, Brössner D, Keplinger K (1997) Alkaloids of Peruvian Uncaria tomentosa. Phytochem 45:855–860

    Article  CAS  Google Scholar 

  • Luna-Palencia GR, Huerta-Heredia AA, Cerda-García-Rojas CM, Ramos-Valdivia AC (2013) Differential alkaloid profile in Uncaria tomentosa micropropagated plantlets and root cultures. Biotechnol Lett 35:791–797

    Article  CAS  PubMed  Google Scholar 

  • Pacheco AC, Cabral CS, Fermino ESS, Aleman CC (2013) Salicylic acid-induced changes to growth, flowering and flavonoids production in marigold plants. J Med Plant Res 42:3158–3163

    Google Scholar 

  • Peterson GL (1977) A simplification of the protein assay method of Lowry et al, which is more generally applicable. Anal Biochem 83:346–356

    Article  CAS  PubMed  Google Scholar 

  • Raskin I (1992) Role of salicylic acid in plants. Annu Rev Plant Physiol 43:439–463

    Article  CAS  Google Scholar 

  • Redinbaugh MG, Sabre M, Scandalios JG (1990) The distribution of catalase activity, isozyme protein, and transcript in the tissues of the developing maize seedling. Plant Physiol 92:375–380

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sánchez-Rojo S, Lopez-Delgado HA, Mora-Herrera ME, Almeyda-Leon HI, Zavaleta-Mancera HA et al (2011) Salicylic acid protects potato plants-from phytoplasma-associated stress and improves tuber photosynthate as similation. Am J Potato Res 88:175–183

    Article  Google Scholar 

  • Shirasu K, Nakajima H, Rajasekhar VK, Dixon RA, Lamb C (1997) Salicylic acid potentiates an agonist-dependent gain control that amplifies pathogen signals in the activation of defense mechanisms. Plant Cell 9:261–270

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–158

    CAS  Google Scholar 

  • Tsukagoshi H, Busch W, Benfey PN (2010) Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root. Cell 143:606–616

    Article  CAS  PubMed  Google Scholar 

  • Vanacker H, Lu H, Rate DN, Greenberg JT (2001) A role for salicylic acid and NPR1 in regulating cell growth in Arabidopsis. Plant J 28:209–216

    Article  CAS  PubMed  Google Scholar 

  • Winkler C, Wirleitner B, Schroecksnadel K, Schennach H, Mur E, Fuchs D (2004) In vitro effects of two extracts and two pure alkaloid preparations of Uncaria tomentosa on peripheral blood mononuclear cells. Planta Med 70:205–210

    Article  CAS  PubMed  Google Scholar 

  • Yu ZW, Quinn PJ (1994) Dimethylsulfoxide: a review of its applications in cell biology. Biosci Rep 14:259–281

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Consejo Nacional de Ciencia y Tecnología (Conacyt-Mexico, grants 105019 and 222097). Silvia Sánchez-Rojo acknowledges Conacyt-Mexico for a doctoral fellowship (211538). Authors wish to thank M Sc Gabriela Luna-Palencia and Dr Ileana Vera-Reyes for advices in chromatographic analyses and Carmen Fontaine for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana C. Ramos-Valdivia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Rojo, S., Cerda-García-Rojas, C.M., Esparza-García, F. et al. Long-term response on growth, antioxidant enzymes, and secondary metabolites in salicylic acid pre-treated Uncaria tomentosa microplants. Biotechnol Lett 37, 2489–2496 (2015). https://doi.org/10.1007/s10529-015-1931-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-015-1931-0

Keywords

Navigation