Skip to main content

Advertisement

Log in

Anti-cancer activity of pegylated liposomal trans-anethole on breast cancer cell lines MCF-7 and T47D

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objective

To examine the role of liposomes for the encapsulation of drugs and their suitability for chemotherapy of breast cancer.

Results

Pegylated liposomal trans-anethole nanoparticles were synthesized through a reverse-phase evaporation technique. Nanoparticles were characterized in terms of mean diameter, size distribution, zeta potential, encapsulation and drug loading efficiency, drug release pattern and cytotoxicity effects. Size and zeta potential of pegylated nanoliposomal drug and blank pegylated nanoliposomal were 257 nm and −28 mV; 35.7 nm and −21 mV, respectively. Encapsulation and drug loading efficiency were 78 ± 2.5 and 2.3 ± 4.1 %, respectively. There was a 57 % release of trans-anethole from pegylated liposomal nanoparticles in 48 h. Compared to free drug, toxicological studies indicated around 9- and 8-fold cytotoxicity effect against MCF-7 and T47D cell lines respectively.

Conclusions

PEG-liposomes provided a high stability and slow release of trans-anethole in two cancer cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allen TM, Cullis PR (2013) Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev 65:36–48

    Article  CAS  PubMed  Google Scholar 

  • Bangham AD, Standish MM, Watkins JC (1965) Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 13:238–252

    Article  CAS  PubMed  Google Scholar 

  • Cho Y, Shi R, Borgens RB, Ivanisevic A (2008) Functionalized mesoporous silica nanoparticle-based drug delivery system to rescue acrolein-mediated cell death. Nanomedicine (Lond) 3:507–519

    Article  CAS  Google Scholar 

  • Choo EJ, Rhee YH, Jeong SJ, Lee HJ, Kim HS, Ko HS, Kim JH, Kwon TR, Jung JH, Kim JH, Lee HJ, Lee EO, Kim DK, Chen CY, Kim SH (2011) Anethole exerts antimetatstaic activity via inhibition of matrix metalloproteinase 2/9 and AKT/mitogen-activated kinase/nuclear factor kappa B signaling pathways. Biol Pharm Bull 34:41–46

    Article  CAS  PubMed  Google Scholar 

  • Cooper DL, Harirforoosh S (2014) Design and optimization of PLGA-based diclofenac loaded nanoparticles. PLoS One 9:e87326

    Article  PubMed Central  PubMed  Google Scholar 

  • Drukarch B, Schepens E, Jongenelen CA, Stoof JC, Langeveld CH (1997) Astrocyte-mediated enhancement of neuronal survival is abolished by glutathione deficiency. Brain Res 770:123–130

    Article  CAS  PubMed  Google Scholar 

  • Haley B, Frenkel E (2008) Nanoparticles for drug delivery in cancer treatment. Urol Oncol 26:57–64

    Article  CAS  PubMed  Google Scholar 

  • Kfoury M, Auezova L, Greige-Gerges H, Ruellan S, Fourmentin S (2014) Cyclodextrin, an efficient tool for trans-anethole encapsulation: chromatographic, spectroscopic, thermal and structural studies. Food Chem 164:454–461

    Article  CAS  PubMed  Google Scholar 

  • Khazaei M, Montaseri A, Khazaei MR, Khanahmadi M (2011) Study of Foeniculum vulgare effect on folliculogenesis in female mice. Int J Fertil Steril 5:122–127

    PubMed Central  PubMed  Google Scholar 

  • Malam Y, Loizidou M, Seifalian AM (2009) Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci 30:592–599

    Article  CAS  PubMed  Google Scholar 

  • Nakase I, Lai H, Singh NP, Sasaki T (2008) Anticancer properties of artemisinin derivatives and their targeted delivery by transferrin conjugation. Int J Pharm 354:28–33

    Article  CAS  PubMed  Google Scholar 

  • Otsuka H, Nagasaki Y, Kataoka K (2012) PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Deliv Rev 64:246–255

    Article  Google Scholar 

  • Park JW (2002) Liposome-based drug delivery in breast cancer treatment. Breast Cancer Res 4:95–99

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Park JW, Hong K, Kirpotin DB, Colbern G, Shalaby R, Baselga J, Shao Y, Nielsen UB, Marks JD, Moore D, Papahadjopoulos D, Benz CC (2002) Anti-HER2 immunoliposomes: enhanced anticancer efficacy due to targeted delivery. Clin Cancer Res 8:1172–1181

    CAS  PubMed  Google Scholar 

  • Pasut G, Veronese FM (2009) PEG conjugates in clinical development or use as anticancer agents: an overview. Adv Drug Deliv Rev 61:1177–1188

    Article  CAS  PubMed  Google Scholar 

  • Pierga JY, Girre V, Laurence V, Asselain B, Diéras V, Jouve M, Beuzeboc P, Fourquet A, Nos C, Sigal-Zafrani B, Pouillart P, Institut Curie Breast Cancer Study Group (2004) Characteristics and outcome of 1755 operable breast cancers in women over 70 years of age. Breast 13:369–375

    Article  PubMed  Google Scholar 

  • Samad A, Sultana Y, Aqil M (2007) Liposomal drug delivery systems: an update review. Curr Drug Deliv 4:297–305

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Sharma US (1997) Liposomes in drug delivery: progress and limitations. Intern J Pharmac 154:123–140

    Article  CAS  Google Scholar 

  • Wang X, Yang L, Chen ZG, Shin DM (2008) Application of nanotechnology in cancer therapy and imaging. CA Cancer J Clin 58:97–110

    Article  PubMed  Google Scholar 

  • Warner E (2011) Clinical practice. Breast-cancer screening. New Engl J Med 365:1025–1032

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Liu HZ, Fu ZX, Lu WD (2011) Oxaliplatin long-circulating liposomes improved therapeutic index of colorectal carcinoma. BMC Biotechnol 11:21

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yatuv R, Robinson M, Dayan-Tarshish I, Baru M (2010) The use of PEGylated liposomes in the development of drug delivery applications for the treatment of hemophilia. Int J Nanomed 5:581–591

    CAS  Google Scholar 

Download references

Supporting information

Supplementary Fig. 1—SEM image of pegylated liposomal trans-anethole nanoparticles synthesized by the reverse-phase evaporation technique (×20,000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azim Akbarzadeh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4082 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahbazian, S., Akbarzadeh, A., Torabi, S. et al. Anti-cancer activity of pegylated liposomal trans-anethole on breast cancer cell lines MCF-7 and T47D. Biotechnol Lett 37, 1355–1359 (2015). https://doi.org/10.1007/s10529-015-1813-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-015-1813-5

Keywords

Navigation