Skip to main content
Log in

Improvement on the thermal stability and activity of plant cytosolic ascorbate peroxidase 1 by tailing hyper-acidic fusion partners

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Cytosolic ascorbate peroxidase 1 (APX1) plays a crucial role in regulating the level of plant cellular reactive oxygen species and its thermolability is proposed to cause plant heat-susceptibility. Herein, several hyper-acidic fusion partners, such as the C-terminal peptide tails, were evaluated for their effects on the thermal stability and activity of APX1 from Jatropha curcas and Arabidopsis. The hyper-acidic fusion partners efficiently improved the thermostability and prevented thermal inactivation of APX1 in both plant species with an elevated heat tolerance of at least 2 °C. These hyper-acidified thermostable APX1 fusion variants are of considerable biotechnological potential and can provide a new route to enhance the heat tolerance of plant species especially of inherent thermo-sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S (2010) Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol 30:161–175

    Article  CAS  PubMed  Google Scholar 

  • Chen GX, Asada K (1989) Ascorbate peroxidase in tea leaves: occurrence of two isozymes and the differences in their enzymatic and molecular properties. Plant Cell Physiol 30:987–998

    CAS  Google Scholar 

  • Davletova S, Rizhsky L, Liang H, Shengqiang Z, Oliver DJ, Coutu J, Shulaev V, Schlauch K, Mittler R (2005) Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell 17:268–281

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Diaz-Vivancos P, Faize M, Barba-Espin G, Faize L, Petri C, Hernández JA, Burgos L (2013) Ectopic expression of cytosolic superoxide dismutase and ascorbate peroxidase leads to salt stress tolerance in transgenic plums. Plant Biotechnol J 11:976–985

    Article  CAS  PubMed  Google Scholar 

  • Faize M, Burgos L, Faize L, Piqueras A, Nicolas E, Barba-Espin G, Clemente-Moreno MJ, Alcobendas R, Artlip T, Hernandez JA (2011) Involvement of cytosolic ascorbate peroxidase and Cu/Zn-superoxide dismutase for improved tolerance against drought stress. J Exp Bot 62:2599–2613

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Liu J, de Marco A (2006) Induced fit of passenger proteins fused to Archaea maltose binding proteins. Biochem Biophys Res Commun 344:25–29

    Article  CAS  PubMed  Google Scholar 

  • Li XJ (2013) Studies on improving the thermal stability of the rubisco activase of higher plants. Yunnan Normal University, Master thesis

  • Lim S, Kim YH, Kim SH, Kwon SY, Lee HS, Kim JS, Cho KY, Paek KY, Kwak SS (2007) Enhanced tolerance of transgenic sweetpotato plants that express both CuZnSOD and APX in chloroplasts to methyl viologen-mediated oxidative stress and chilling. Mol Breed 19:227–239

    Article  CAS  Google Scholar 

  • Luke JM, Carnes AE, Sun P, Hodgson CP, Waugh DS, Williams JA (2011) Thermostable tag (TST) protein expression system: engineering thermotolerant recombinant proteins and vaccines. J Biotechnol 151:242–250

    Article  CAS  PubMed  Google Scholar 

  • Martell JD, Deerinck TJ, Sancak Y, Poulos TL, Mootha VK, Sosinsky GE, Ellisman MH, Ting AY (2012) Engineered ascorbate peroxidase as a genetically encoded reporter for electron microscopy. Nat Biotechnol 30:1143–1148

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mittler R, Zilinskas A (1993) Detection of ascorbate peroxidase activity in native gels by inhibition of the ascorbate-dependent reduction of nitroblue tetrazolium. Anal Biochem 212:540–546

    Article  CAS  PubMed  Google Scholar 

  • Panchuk II, Volkov RA, Schöffl F (2002) Heat stress- and heat shock transcription factor- dependent expression and activity of ascorbate peroxidase in Arabidopsis. Plant Physiol 29:838–853

    Article  Google Scholar 

  • Park SM, Jung HY, Chung KC, Rhim H, Park JH, Kim J (2002) Stress-induced aggregation profiles of GST-alpha-synuclein fusion proteins: role of the C-terminal acidic tail of alpha-synuclein in protein thermosolubility and stability. Biochemistry 41:4137–4146

    Article  CAS  PubMed  Google Scholar 

  • Park SM, Ahn KJ, Jung HY, Park JH, Kim J (2004) Effects of novel peptides derived from the acidic tail of synuclein (ATS) on the aggregation and stability of fusion proteins. Protein Eng Des Sel 17:251–260

    Article  CAS  PubMed  Google Scholar 

  • Pnueli L, Liang H, Rozenberg M, Mittler R (2003) Growth suppression, altered stomatal responses, and augmented induction of heat shock proteins in cytosolic ascorbate peroxidase (Apx1)-deficient Arabidopsis plants. Plant J 34:187–203

    Article  CAS  PubMed  Google Scholar 

  • Salvucci ME, Crafts-Brandner SJ (2004) Relationship between the heat tolerance of photosynthesis and the thermal stability of rubisco activase in plants from contrasting thermal environments. Plant Physiol 134:1460–1470

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vanderauwera S, Suzuki N, Miller G, van de Cotte B, Morsa S, Ravanat JL, Hegie A, Triantaphylidès C, Shulaev V, Van Montagu MC, Van Breusegem F, Mittler R (2011) Extranuclear protection of chromosomal DNA from oxidative stress. Proc Natl Acad Sci USA 108:1711–1716

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang H, Zou Z, Wang S, Gong M (2013) Global analysis of transcriptome responses and gene expression profiles to cold stress of Jatropha curcas L. PLoS ONE 8:e82817

    Article  PubMed Central  PubMed  Google Scholar 

  • Wijma HJ, Floor RJ, Janssen DB (2013) Structure- and sequence-analysis inspired engineering of proteins for enhanced thermostability. Curr Opin Struct Biol 23:588–594

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zou Z, Cao L, Zhou P, Su Y, Sun Y, Li W (2008) Hyper-acidic protein fusion partners improve solubility and assist correct folding of recombinant proteins expressed in Escherichia coli. J Biotechnol 135:333–339

    Article  CAS  PubMed  Google Scholar 

  • Zou Z, Fan Y, Zhang C (2011) Preventing protein aggregation by its hyper-acidic fusion cognates in Escherichia coli. Protein Expr Purif 80:138–144

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by several grants from the National Foundations of Natural Sciences, China (No. 31260064 to M. Gong, No. 31060160, 31160169 to Z. Zou).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhurong Zou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Gong, M., Yang, Y. et al. Improvement on the thermal stability and activity of plant cytosolic ascorbate peroxidase 1 by tailing hyper-acidic fusion partners. Biotechnol Lett 37, 891–898 (2015). https://doi.org/10.1007/s10529-014-1754-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-014-1754-4

Keywords

Navigation