Skip to main content
Log in

Modification and simulation of Rhizomucor miehei lipase: the influence of surficial electrostatic interaction on enantioselectivity

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Surface residues have a significant impact on the enantioselectivity of lipases. But the molecular basis of this has never been explained. In this work, transition state complexes of Rhizomucor miehei lipase (RmL) and (R)- or (S)-n-butyl 2-phenxypropinate were studied using molecular dynamics. According to comparison between B-factor of the two simulated complexes, the β 1β 2 loop and α 2 helix were considered the enantioselectivity-determining domains of RmL. Interaction analysis of these domains suggested an Asp61–Arg86 electrostatic interaction linking the loop and helix strongly impacting enantioselectivity of RmL. Modification of Arg86 by 1, 2-cyclohexanedione weakening this interaction decreased the E ratio from 6 to 1, modification by 1-iodo-2, 3-butanedione covalently bonding Asp61 and Arg86 strengthening the interaction increased the E ratio to 45. Dynamics simulation and energy calculation of the modified lipases also displayed corresponding decreases or increases of enantioselectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barbosaa O, Ruiza M, Ortizc C, Fernándezd M et al (2012) Modulation of the properties of immobilized CALB by chemical modification with 2, 3, 4-trinitrobenzenesulfonate or ethylendiamine. Advantages of using adsorbed lipases on hydrophobic supports. Proc Biochem 47:867–876

    Article  Google Scholar 

  • Brady L, Brzozowski AM, Derewenda ZS, Dodson E et al (1990) A serine protease triad forms the catalytic centre of a triacylglycerol lipase. Nature 343:767–770

    Article  CAS  PubMed  Google Scholar 

  • Case DA, Darden TA, Cheatham TE III, Simmerling CL et al (2011) AMBER 11. University of California, San Francisco

    Google Scholar 

  • Cedrone G, Ménez A, Quéméneur E (2000) Tailoring new enzyme functions by rational redesign. Curr Opin Struct Biol 10:405–410

    Article  CAS  PubMed  Google Scholar 

  • Chang C, Liu X, Chen K (2011) Molecular cloning, expression and characterization of a novel gene β-N-acetylglucosaminidase from Bombyx mori. Adv Biosci Biotechnol 9:123–127

    Article  Google Scholar 

  • Chen CS, Fujimoto Y, Girdaukas G, Sih C-J (1982) Quantitative analyses of biochemical kinetic resolutions of enantiomers. J Am Chem Soc 104:7294–7299

    Article  CAS  Google Scholar 

  • Chen H, Wu J-P, Yang L-R, Xu G (2013) A combination of site-directed mutagenesis and chemical modification to improve diastereopreference of Pseudomonas alcaligenes lipase. Biochim Biophys Acta 1834:2494–2501

    Article  CAS  PubMed  Google Scholar 

  • Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J Chem Phys 98:10089

    Article  CAS  Google Scholar 

  • Derewenda U, Brzozowski AM, Lawson DM, Derewenda ZS (1992) Catalysis at the interface: the anatomy of a conformational change in a triglyceride lipase. Biochemistry 31:1532–1541

    Article  CAS  PubMed  Google Scholar 

  • Gotor-Fernández V, Brieva R, Gotor V (2006) Lipases: Useful biocatalysts for the preparation of pharmaceuticals. J Mol Catal B-Enzym 40:111–120

    Article  Google Scholar 

  • Haffner F, Norin T (1999) Molecular modeling of lipase-catalyzed reactions. Prediction of enantioselectivities. Chem Pharm Bull 47:591–600

    Article  Google Scholar 

  • Harris JL, Craik CS (1998) Engineering enzyme specificity. Curr Opin Chem Biol 2:127–132

    Article  CAS  PubMed  Google Scholar 

  • Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472

    Article  CAS  Google Scholar 

  • Holmquist M, Martinelle M, Berglund P, Clausen IG et al (1993) Lipases from Rhizomucor miehei and Humicola lanuginosa: modification of the lid covering the active site alters enantioselectivity. J Protein Chem (Protein J) 12:749–757

    Article  CAS  Google Scholar 

  • Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW et al (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926

    Article  CAS  Google Scholar 

  • Kazlauskas RJ, Weissfloch ANE (1997) A structure-based rationalization of the enantiopreference of subtilisin toward secondary alcohols and isosteric primary amines. J Mol Catal B-Enzym 3:65–72

    Article  CAS  Google Scholar 

  • Kazlauskas RJ, Weissfloch ANE, Rappaport AT, Cuccia LA (1991) A rule to predict which enantiomer of a secondary alcohol reacts faster in reactions catalyzed by cholesterol esterase, lipase from Pseudomonas cepacia, and lipase from Candida rugosa. J Org Chem 56:2656–2665

    Article  CAS  Google Scholar 

  • Miteva MA, Tuffery P, Villoutreix BO (2005) PCE: web tools to compute protein continuum electrostatics. Nucleic Acid Res 33:W372–W375

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Neria E, Fischer S, Karplus MJ (1996) Simulation of activation free energies in molecular systems. Chem Phys 105:1902

    CAS  Google Scholar 

  • Rodrigues RC, Fernandez-Lafuente R (2010a) Lipase from Rhizomucor miehei as a biocatalyst in fats and oils modification. J Mol Catal B-Enzym 66:15–32

    Article  CAS  Google Scholar 

  • Rodrigues RC, Fernandez-Lafuente R (2010b) Lipase from Rhizomucor miehei as an industrial biocatalyst in chemical processes. J Mol Catal B-Enzym 64:1–22

    Article  CAS  Google Scholar 

  • Rychaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341

    Article  Google Scholar 

  • Sonnet PE (1988) Lipase Selectivities. J Am Oil Chem Soc 65:900–904

    Article  CAS  Google Scholar 

  • Ueji S, Ueda A, Tanaka H, Watanabe K et al (2003) Chemical modification of lipases with various hydrophobic groups improves their enantioselectivity in hydrolytic reactions. Biotechnol Lett 25:83–87

    Article  CAS  PubMed  Google Scholar 

  • Vandahl BB, Birkelund S, Demol H, Hoorelbeke B et al (2001) Proteome analysis of the Chlamydia pneumonia elementary body. Electrophoresis 22:1204–1223

    Article  CAS  PubMed  Google Scholar 

  • Zehl ZM, Ivana L, Marija A, Andreas R et al (2004) Characterization of covalently inhibited extracellular lipase from Streptomyces rimosus by matrix-assisted laser desorption/ionization time-of-flight and matrix-assisted laser desorption/ionization quadrupole ion trap reflectron time-of-flight mass spectrometry: localization of the active site serine. J Mass Spectrom 39:1474–1483

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Basic Research Program of China (973 Program, No. 2011CB710800), Hi-Tech Research and Development Program of China (863 Program, 2011AA02A209), National Natural Science Foundation of China (No. 20936002), and the Science and Technology Planning Project of Zhejiang Province (No. 2010C31127).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Ping Wu.

Additional information

Gang Xu and Xiao Meng have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, G., Meng, X., Xu, LJ. et al. Modification and simulation of Rhizomucor miehei lipase: the influence of surficial electrostatic interaction on enantioselectivity. Biotechnol Lett 37, 871–880 (2015). https://doi.org/10.1007/s10529-014-1747-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-014-1747-3

Keywords

Navigation