Skip to main content
Log in

Expression of an alkane monooxygenase (alkB) gene and methyl tert-butyl ether co-metabolic oxidation in Pseudomonas citronellolis

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Pseudomonas citronellolis UAM-Ps1 co-metabolically transforms methyl tert-butyl ether (MTBE) to tert-butyl alcohol with n-pentane (2.6 mM), n-octane (1.5 mM) or dicyclopropylketone (DCPK) (4.4 mM), a gratuitous inducer of alkane hydroxylase (AlkB) activity. The reverse transcription quantitative real-time PCR was used to quantify the alkane monooxygenase (alkB) gene expression. The alkB gene was expressed in the presence of n-alkanes and DCPK and MTBE oxidation occurred only in cultures when alkB was transcribed. A correlation between the number of alkB transcripts and MTBE consumption was found (ΜΤΒΕ consumption in μmol = 1.44e−13 x DNA copies, R2 = 0.99) when MTBE (0.84 mM) was added. Furthermore, alkB was cloned and expressed into Escherichia coli and the recombinant AlkB had a molecular weight of 42 kDa. This is the first report where the expression of alkB is related to the co-metabolic oxidation of MTBE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bustin SA, Benes V, Garson JA, Hallemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative Real-Time PCR experiments. Clin Chem 55:611–622

    Article  CAS  PubMed  Google Scholar 

  • Chen QI, Janssen DB, Witholt B (1995) Growth on octane alters the membrane lipid fatty acids of Pseudomonas oleovorans due to the induction of alkB and synthesis of octanol. J Bacteriol 177:6894–6901

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fortin NY, Deshusses MA (1999) Treatment of methyl tert-butyl ether vapors in biotrickling filters. 1. Reactor startup, steady-state performance, and culture characteristics. Environ Sci Technol 33:2980–2986

    Article  CAS  Google Scholar 

  • Kong WD, Nakatsu CH (2010) Optimization of RNA extraction for PCR quantification of aromatic compound degradation genes. Appl Environ Microbiol 76:1282–1284

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morales M, Velázquez E, Jan J, Revah S, González U, Razo-Flores E (2004) Methyl tert-butyl ether biodegradation by microbial consortia obtained from soil samples of gasoline-polluted sites in Mexico. Biotechnol Lett 26:269–275

    Article  CAS  PubMed  Google Scholar 

  • Prosser JI (2002) Molecular and functional diversity in soil micro-organisms. Plant Soil 244:9–17

    Article  CAS  Google Scholar 

  • Rojo F (2005) Specificity at the end of the tune: understanding substrate length discrimination by the AlkB alkane hydroxylase. J Bacteriol 187:19–22

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smith CA, Hyman MR (2004) Oxidation of methyl tert-butyl ether by alkane hydroxylase in dicyclopropylketone-induced and n-octane-grown Pseudomonas putida GPo1. Appl Environ Microbiol 70:4544–4550

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smith CA, Hyman MR (2010) Oxidation of gasoline oxygenates by closely related non-haem-iron alkane hydroxylases in Pseudomonas mendocina KR1 and other n-octane-utilizing Pseudomonas strains. Environ Microbiol Rep 2:426–432

    Article  CAS  PubMed  Google Scholar 

  • Smith CA, O’Reilly KT, Hyman MR (2003) Co-metabolism of methyl tertiary butyl ether and gaseous n-alkanes by Pseudomonas mendocina KR-1 grown on C(5) to C(8) n-alkanes. Appl Environ Microbiol 69:7385–7394

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smits THM, Balada SB, Witholt B, van Beilen JB (2002) Functional analysis of alkane hydroxylases from Gram-negative and Gram-positive bacteria. J Bacteriol 184:1733–1742

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Staijen IE, Marcionelli R, Witholt B (1999) The P-alkBFGHJKL promoter is under carbon catabolite repression control in Pseudomonas oleovorans but not in Escherichia coli alk(+) recombinants. J Bacteriol 181:1610–1616

    PubMed Central  CAS  PubMed  Google Scholar 

  • van Beilen JB, Panke S, Lucchini S, Franchini AG, Röthlisberger M, Witholt B (2001) Analysis of Pseudomonas putida alkane-degradation gene cluster and flanking insertion sequences: evolution and regulation of the alk genes. Microbiology 147:1621–1630

    PubMed  Google Scholar 

  • van Beilen JB, Li Z, Duetz WA, Smits THM, Witholt B (2003) Diversity of alkane hydroxylase systems in the environment. Oil Gas Sci Technol 58:427–440

    Article  Google Scholar 

  • Yuste L, Canosa I, Rojo F (1998) Carbon-source-dependent expression of the PalkB promoter from the Pseudomonas oleovorans alkane degradation pathway. J Bacteriol 180:5218–5226

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank to Paul Gaytan and Jorge Arturo Yañez from the Instituto de Biotecnología (UNAM) for DNA sequencing procedures and to the Instituto de Ciencia y Tecnología del DF (ICyTDF) for the economical support to Ana Luisa Bravo. This work was supported by research Grant 24647 from the Consejo Nacional de Ciencia y Tecnología (CONACyT).

Supporting information

Supplementary Figure 1—Standard curve for alkB quantification.

Supplementary Figure 2—Unrooted phylogenetic tree of partial (*) and complete amino acid sequences of membrane-bond alkane monooxygenases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcia Morales.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 322 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bravo, A.L., Sigala, J.C., Le Borgne, S. et al. Expression of an alkane monooxygenase (alkB) gene and methyl tert-butyl ether co-metabolic oxidation in Pseudomonas citronellolis . Biotechnol Lett 37, 807–814 (2015). https://doi.org/10.1007/s10529-014-1737-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-014-1737-5

Keywords

Navigation