Skip to main content
Log in

Biocatalysis and biotransformation of resveratrol in microorganisms

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Resveratrol, a major stilbene phytoalexin, is a valuable polyphenol that has been recognized for its benefits to human health. Resveratrol has antioxidant and antitumor effects and promotes longevity. It is used in medicine, health care products, cosmetics, and other industries. Therefore, a sustainable source for resveratrol production is required. This review describes the metabolic engineering of microorganisms, the biotransformation and biosynthesis of endophytes and the oxidation or degradation of resveratrol. We compare various available methods for resveratrol production, and summarize the practical challenges facing the microbial production of resveratrol. The future research direction for resveratrol is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ajikumar PK, Xiao WH, Tyo KE et al (2010) Escherichia coli in isoprenoid pathway optimization for taxol precursor overproduction. Science 330:70–74

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Almagro L, Belchí-Navarro S, Sabater-Jara AB et al (2013) Bioproduction of trans-resveratrol from grapevine cell cultures. In: Ramawat KG, Merillon JM (eds) Natural products. Springer, Berlin

    Google Scholar 

  • Aly AH, Debbab A, Kjer J et al (2010) Fungal endophytes from higher plants: a prolific source of phytochemicals and other bioactive natural products. Fungal Divers 41:1–16

    Article  Google Scholar 

  • Bai T, Dong DS, Pei L (2014) Synergistic antitumor activity of resveratrol and miR-200c in human lung cancer. Oncol Rep 31:2293–2297

    CAS  PubMed  Google Scholar 

  • Baur JA, Sinclair DA (2006) Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 5:493–506

    Article  CAS  PubMed  Google Scholar 

  • Baur JA, Pearson KJ, Price NL et al (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444:337–342

    Article  CAS  PubMed  Google Scholar 

  • Becker JVW, Armstrong GO, Merwe MJ et al (2003) Metabolic engineering of Saccharomyces cerevisiae for the synthesis of the wine-related antioxidant resveratrol. FEMS Yeast Res 4:79–85

    Article  CAS  PubMed  Google Scholar 

  • Beekwilder J, Wolswinkel R, Jonker H et al (2006) Production of resveratrol in recombinant microorganisms. Appl Environ Microbiol 72:5670–5672

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Berrougui H, Grenier G, Loued S et al (2009) A new insight into resveratrol as an atheroprotective compound: inhibition of lipid peroxidation and enhancement of cholesterol efflux. Atherosclerosis 207:420–427

    Article  CAS  PubMed  Google Scholar 

  • Bradamante S, Barenghi L, Villa A (2004) Cardiovascular protective effects of resveratrol. Cardiovasc Drug Rev 22:169–188

    Article  CAS  PubMed  Google Scholar 

  • Brefort T, Scherzinger D, Limón MC et al (2011) Cleavage of resveratrol in fungi: characterization of the enzyme Rco1 from Ustilago maydis. Fungal Genet Biol 48:132–143

    Article  CAS  PubMed  Google Scholar 

  • Breuil A, Adrian M, Pirio N et al (1998) Metabolism of stilbene phytoalexins by Botrytis cinerea: 1. Characterization of a resveratrol dehydrodimer. Tetrahedron Lett 39:537–540

    Article  CAS  Google Scholar 

  • Bru R, Sellés S, Casado-Vela J et al (2006) Modified cyclodextrins are chemically defined glucan inducers of defense responses in grapevine cell cultures. J Agric Food Chem 54:65–71

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Li D, Gao Z et al (2014) Enzymatic transformation of polydatin to resveratrol by piceid-β-d-glucosidase from Aspergillus oryzae. Bioprocess Biosyst Eng 37(7):1411–1416

    Article  CAS  PubMed  Google Scholar 

  • Choi O, Wu CZ, Kang SY et al (2011) Biosynthesis of plant-specific phenylpropanoids by construction of an artificial biosynthetic pathway in Escherichia coli. J Ind Microbiol Biotechnol 38:1657–1665

    Article  CAS  PubMed  Google Scholar 

  • Cichewicz RH, Kouzi SA, Hamann MT (2000) Dimerization of resveratrol by the grapevine pathogen Botrytis cinerea. J Nat Prod 63:29–33

    Article  CAS  PubMed  Google Scholar 

  • De La Lastra CA, Villegas I (2005) Resveratrol as an anti-inflammatory and anti-aging agent: mechanisms and clinical implications. Mol Nutr Food Res 49:405–430

    Article  PubMed  Google Scholar 

  • Donnez D, Jeandet P, Clement C et al (2009) Bioproduction of resveratrol and stilbene derivatives by plant cells and microorganisms. Trends Biotechnol 27:706–713

    Article  CAS  PubMed  Google Scholar 

  • Dubrovina AS, Kiselev KV (2012) Effect of long-term cultivation on resveratrol accumulation in a high-producing cell culture of Vitis amurensis. Acta Physiol Plant 34:1101–1106

    Article  CAS  Google Scholar 

  • Fernández-Mara MI, Mateosb R, García-Parrillac MC et al (2012) Bioactive compounds in wine: resveratrol, hydroxytyrosol and melatonin: a review. Food Chem 130:797–813

    Article  Google Scholar 

  • Ferrer JL, Austin MB, Stewart Jr C et al (2008) Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiol Biochem 46:356–370 Fluxome® Resveratrol Affirmed GRAS. http://www.naturalproductsinsider.com/news/2011/03/fluxome-resveratrol-affirmed-gras.aspx

  • Hasan MM, Cha M, Bajpai VK et al (2013) Production of a major stilbene phytoalexin, resveratrol in peanut (Arachis hypogaea) and peanut products: a mini review. Rev Environ Sci Biotechnol 12:209–221

    Article  CAS  Google Scholar 

  • Holthoff JH, Woodling KA, Doerge DR et al (2010) Resveratrol, a dietary polyphenolic phytoalexin, is a functional scavenger of peroxynitrite. Biochem Pharmacol 80:1260–1265

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang KS, Lin M, Yu LN et al (2000) Four novel oligostilbenes from the roots of Vitis amurensis. Tetrahedron 56:1321–1329

    Article  CAS  Google Scholar 

  • Jang M, Cai L, Udeani GO, Slowing KV et al (1997) Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275:218–220

    Article  CAS  PubMed  Google Scholar 

  • Jansen F, Gillessen B, Mueller F et al (2014) Metabolic engineering for p-coumaryl alcohol production in Escherichia coli by introducing an artificial phenylpropanoid pathway. Biotechnol Appl Biochem. doi:10.1002/bab.1222

    PubMed  Google Scholar 

  • Jin S, Luo M, Wang W et al (2013) Biotransformation of polydatin to resveratrol in Polygonum cuspidatum roots by highly immobilized edible Aspergillus niger and Yeast. Bioresour Technol 136:766–770

    Article  CAS  PubMed  Google Scholar 

  • Kaeberlein M, Rabinovitch PS (2006) Medicine: grapes versus gluttony. Nature 444:280–281

    Article  CAS  PubMed  Google Scholar 

  • Katsuyama Y, Funa N, Horinouchi S (2007a) Precursor-directed biosynthesis of stilbene methyl ethers in Escherichia coli. Biotechnol J 2:1286–1293

    Article  CAS  PubMed  Google Scholar 

  • Katsuyama Y, Funa N, Miyahisa I et al (2007b) Synthesis of unnatural flavonoids and stilbenes by exploiting the plant biosynthetic pathway in Escherichia coli. Chem Biol 14:613–621

    Article  CAS  PubMed  Google Scholar 

  • Koopman F, Beekwilder J, Crimi B et al (2012) De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae. Microb Cell Factories 11:155–170

    Article  CAS  Google Scholar 

  • Lançon A, Kaminski J, Tili E et al (2012) Control of microRNA expression as a new way for resveratrol to deliver its beneficial effects. J Agric Food Chem 60:8783–8789

    Article  PubMed  Google Scholar 

  • Lim CG, Fowler ZL, Hueller T et al (2011) High-yield resveratrol production in engineered Escherichia coli. Appl Environ Microbiol 77:3451–3460

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Limem I, Guedon E, Hehn A et al (2008) Production of phenylpropanoid compounds by recombinant microorganisms expressing plant-specific biosynthesis genes. Process Biochem 43:463–479

    Article  CAS  Google Scholar 

  • Lorenz P, Roychowdhury S, Engelmann M et al (2003) Oxyresveratrol and resveratrol are potent antioxidants and free radical scavengers: effect on nitrosative and oxidative stress derived from microglial cells. Nitric Oxide 9:64–76

    Article  CAS  PubMed  Google Scholar 

  • Lou J, Fu L, Peng Y et al (2013) Metabolites from Alternaria fungi and their bioactivities. Molecules 18:5891–5935

    Article  PubMed  Google Scholar 

  • Marienhagen J, Bott M (2013) Metabolic engineering of microorganisms for the synthesis of plant natural products. J Biotechnol 163:166–178

    Article  CAS  PubMed  Google Scholar 

  • Martin VJ, Pitera DJ, Keasling JD (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 21:796–802

    Article  CAS  PubMed  Google Scholar 

  • Mikulski D, Górniak R, Molski M (2010) A theoretical study of the structure-radical scavenging activity of trans-resveratrol analogues and cis-resveratrol in gas phase and water environment. Eur J Med Chem 45:1015–1027

    Article  CAS  PubMed  Google Scholar 

  • Nicotra S, Cramarossa MR, Mucci A et al (2004) Biotransformation of resveratrol: synthesis of trans-dehydrodimers catalyzed by laccases from Myceliophtora thermophyla and from Trametes pubescens. Tetrahedron 60:595–600

    Article  CAS  Google Scholar 

  • Nonomura S, Kanagawa H, Makimoto A (1963) Chemical constituents of polygonaceous plants. I. Studies on the components of Ko-J O-Kon. (Polygonum cuspidatum Sieb. Et Zucc.). Yakugaku Zasshi 83:988–990

    CAS  PubMed  Google Scholar 

  • Nopo-Olazabal C, Hubstenberger J, Nopo-Olazabal L et al (2013) Antioxidant activity of selected stilbenoids and their bioproduction in hairy root cultures of muscadine grape (Vitis rotundifolia Michx.). J Agric Food Chem 61:11744–11758

    Article  CAS  PubMed  Google Scholar 

  • Okawara M, Katsuki H, Kurimoto E et al (2007) Resveratrol protects dopaminergic neurons in midbrain slice culture from multiple insults. Biochem Pharmacol 73:550–560

    Article  CAS  PubMed  Google Scholar 

  • Pangeni R, Sahni JK, Ali J et al (2014) Resveratrol: review on therapeutic potential and recent advances in drug delivery. Expert Opin Drug Deliv 11:1285–1298

    Article  CAS  PubMed  Google Scholar 

  • Park SJ, Ahmad F, Philp A et al (2012) Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell 148:421–433

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pezet R (1998) Purification and characterization of a 32-kDa laccase-like stilbene oxidase produced by Botrytis cinerea Pers.:Fr. FEMS Microbiol Lett 167:203–208

    Article  CAS  Google Scholar 

  • Pinto Mdel C, García-Barrado JA, Macías P (2003) Oxidation of resveratrol catalyzed by soybean lipoxygenase. J Agric Food Chem 51:1653–1657

    Article  PubMed  Google Scholar 

  • Ponzoni C, Beneventi E, Cramarossa MR et al (2007) Laccase-catalyzed dimerization of hydroxystilbenes. Adv Synth Catal 349:1497–1506

    Article  CAS  Google Scholar 

  • Ren CG, Dai CC (2013) Nitric oxide and brassinosteroids mediated fungal endophyte-induced volatile oil production through protein phosphorylation pathways in Atractylodes lancea plantlets. J Integr Plant Biol 55:1136–1146

    Article  CAS  PubMed  Google Scholar 

  • Rosler J, Krekel F, Amrhein N et al (1997) Maize phenylalanine ammonia-lyase has tyrosine ammonia-lyase activity. Plant Physiol 113:175–179

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ryan RP, Germaine K, Franks A et al (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9

    Article  CAS  PubMed  Google Scholar 

  • Saraswati SV, Thomas NF, Weber JF (2012) Strategies and methods for the syntheses of natural oligomeric stilbenoids and analogues. Curr Org Chem 16:605–662

    Article  Google Scholar 

  • Savoia D (2012) Plant-derived antimicrobial compounds: alternatives to antibiotics. Future Microbiol 7:979–990

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Zeng Q, Liu Y et al (2012) Alternaria sp. MG1, a resveratrol-producing fungus: isolation, identification, and optimal cultivation conditions for resveratrol production. Appl Microbiol Biotechnol 95:369–379

    Article  CAS  PubMed  Google Scholar 

  • Shin SY, Han NS, Park YC et al (2011) Production of resveratrol from p-coumaric acid in recombinant Saccharomyces cerevisiae expressing 4-coumarate:coenzyme A ligase and stilbene synthase genes. Enzym Microb Technol 48:48–53

    Article  CAS  Google Scholar 

  • Solladié G, Pasturel-Jacopé Y, Maignan J (2003) A re-investigation of resveratrol synthesis by Perkins reaction. Application to the synthesis of aryl cinnamic acids. Tetrahedron 59:3315–3321

    Article  Google Scholar 

  • Stervbo U, Vang O, Bonnesen C (2007) A review of the content of the putative chemopreventive phytoalexin resveratrol in red wine. Food Chem 101:449–457

    Article  CAS  Google Scholar 

  • Sydor T, Schaffer S, Boles E (2010) Considerable increase in resveratrol production by recombinant industrial yeast strains with use of rich medium. Appl Environ Microbiol 10:3361–3363

    Article  Google Scholar 

  • Takaoka MJ (1940) The phenolic substances of white hellebore (Veratrum grandiflorum Loes. fil.). J Fac Sci Hokkaido Imp Univ 3:1–16

    CAS  Google Scholar 

  • Takaya Y, Terashima K, Ito J et al (2005) Biomimic transformation of resveratrol. Tetrahedron 61:10285–10290

    Article  CAS  Google Scholar 

  • Tong L (2005) Acetyl-coenzyme A carboxylase: crucial metabolic enzyme and attractive target for drug discovery. Cell Mol Life Sci 62:1784–1803

    Article  CAS  PubMed  Google Scholar 

  • Trantas E, Panopoulos N, Ververidis F (2009) Metabolic engineering of the complete pathway leading to heterologous biosynthesis of various flavonoids and stilbenoids in Saccharomyces cerevisiae. Metab Eng 6:355–366

    Article  Google Scholar 

  • Wang Y, Yu O (2012) Synthetic scaffolds increased resveratrol biosynthesis in engineered yeast cells. J Biotechnol 157:258–260

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Jin Y, Ho CT (1999) Evaluation of resveratrol derivatives as potential antioxidants and identification of a reaction product of resveratrol and 2,2-diphenyl-1-picryhydrazyl radical. J Agric Food Chem 47:3974–3977

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Guo YX, Dong YS et al (2007) Biotransformation of piceid in Polygonum cuspidatum to resveratrol by Aspergillus oryzae. Appl Microbiol Biotechnol 75:763–768

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Halls C, Zhang J et al (2011) Stepwise increase of resveratrol biosynthesis in yeast Saccharomyces cerevisiae by metabolic engineering. Metab Eng 13:455–463

    Article  CAS  PubMed  Google Scholar 

  • Watts K, Lee P, Schmidt DC (2006) Biosynthesis of plant-specific stilbene polyketides in metabolically engineered Escherichia coli. BMC Biotechnol 6:1–12

    Article  Google Scholar 

  • Whitlock NC, Baek SJ (2012) The anticancer effects of resveratrol: modulation of transcription factors. Nutr Cancer 64:493–502

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wilkens A, Paulsen J, Wray V et al (2010) Structures of two novel trimeric stilbenes obtained by horseradish peroxidase catalyzed biotransformation of resveratrol and (−)-epsilon-viniferin. J Agric Food Chem 58:6754–6761

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Li SZ, Li J et al (2006) Using unnatural protein fusions to engineer resveratrol biosynthesis in yeast and mammalian cells. J Am Chem Soc 128:13030–13031

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Shi J, Liu Y (2013) Substrates and enzyme activities related to biotransformation of resveratrol from phenylalanine by Alternaria sp. MG1. Appl Microbiol Biotechnol 97:9941–9954

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks for financial supports from the National Natural Science Foundation of China (Project No. 41306139); the National Science Foundation for Talents Training in Basic Science, China (J1103507); a PhD Programs Foundation of Ministry of Education of China (Grant No. 20133207120001), the Project of the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan-Chao Dai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mei, YZ., Liu, RX., Wang, DP. et al. Biocatalysis and biotransformation of resveratrol in microorganisms. Biotechnol Lett 37, 9–18 (2015). https://doi.org/10.1007/s10529-014-1651-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-014-1651-x

Keywords

Navigation