Skip to main content

Advertisement

Log in

Genetics of Congenital Heart Disease: Past and Present

  • Review
  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Congenital heart disease is the most common congenital anomaly, representing an important cause of infant morbidity and mortality. Congenital heart disease represents a group of heart anomalies that include septal defects, valve defects, and outflow tract anomalies. The exact genetic, epigenetic, or environmental basis of congenital heart disease remains poorly understood, although the exact mechanism is likely multifactorial. However, the development of new technologies including copy number variants, single-nucleotide polymorphism, next-generation sequencing are accelerating the detection of genetic causes of heart anomalies. Recent studies suggest a role of small non-coding RNAs, micro RNA, in congenital heart disease. The recently described epigenetic factors have also been found to contribute to cardiac morphogenesis. In this review, we present past and recent genetic discoveries in congenital heart disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackerman C, Locke AE, Feingold E, Reshey B, Espana K, Thusberg J, Mooney S, Bean LJH, Dooley KJ, Cua CL, Reeves RH, Sherman SL, Maslen CL (2012) An excess of deleterious variants in VEGF-A pathway genes in Down-syndrome-associated atrioventricular septal defects. Am J Hum Genet 91:646–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alagille D, Odievre M, Gautier M, Dommergues JP (1975) Hepatic ductular hypoplasia associated with characteristic faces, vertebral malformations, retarded physical, mental and sexual development, and cardiac murmur. J Pediat 86:63–71

    Article  CAS  PubMed  Google Scholar 

  • Andelfinger G (2014) Next-generation sequencing in congenital heart disease: do new brooms sweep clean? J Am Coll Cardiol 64:2507–2509

    Article  PubMed  Google Scholar 

  • Aoki Y, Niihori T, Kawame H, Kurosawa K, Ohashi H, Tanaka Y, Filocamo M, Kato K, Suzuki Y, Kure S, Matsubara Y (2005) Germline mutations in HRAS proto-oncogene cause Costello syndrome. Nat Genet 37:1038–1040

    Article  CAS  PubMed  Google Scholar 

  • Aoki Y, Niihori T, Banjo T, Okamoto N, Mizuno S, Kurosawa K, Ogata T, Takada F, Yano M, Ando T, Hoshika T, Barnett C et al (2013) Gain-of-function mutations in RIT1 cause Noonan syndrome, a RAS/MAPK pathway syndrome. Am J Hum Genet 93:173–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bajpai R, Chen DA, Rada-Iglesias A, Zhang J, Xiong Y, Helms J, Chang CP, Zhao Y, Swigut T, Wysocka J (2010) CHD7 cooperates with PBAF to control multipotent neural crest formation. Nature 463:958–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Basson CT, Bachinsky DR, Lin RC, Levi T, Elkins JA, Soults J, Grayzel D, Kroumpouzou E, Traill TA, Leblanc-Straceski J, Renault B, Kucherlapati R, Seidman JG, Seidman CE (1997) Mutations in human TBX5 cause limb and cardiac malformation in Holt–Oram syndrome. Nat Genet 15:30–35

    Article  CAS  PubMed  Google Scholar 

  • Battaglia A, Hoyme HE, Dallapiccola B, Zackai E, Hudgins L, McDonald-McGinn D, Bahi-Buisson N, Romano C et al (2008) Further delination of deletion 1p36 syndrome in 60 patients: a recognizable phenotype and common cause of developmental delay and mental retardation. Pediatrics 121(2):404–410

    Article  PubMed  Google Scholar 

  • Bittel DC, Kibiryeva N, Marshall JA et al (2014) MicroRNA-421 dysregulation is associated with tetralogy of Fallot. Cells 3:713–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blue GM, Kirk EP, Giannoulatou E et al (2014) Targeted next-generation sequencing identifies pathogenic variants in familial congenital heart disease. J Am Coll Cardiol 64:2498–2506

    Article  CAS  PubMed  Google Scholar 

  • Carey JC (2010) Trisomy 18 and trisomy 13 syndromes. In: Cassidy SB, Allanson JE (eds) Management of genetic syndromes, 3rd edn. Wiley, New York, pp 807–823

    Chapter  Google Scholar 

  • Catalucci D, Latronico MV, Condorelli G (2008) MicroRNAs control gene expression: importance for cardiac development and pathophysiology. Ann N Y Acad Sci 1123:20–29

    Article  CAS  PubMed  Google Scholar 

  • Chang S, McKinsey TA, Zhang CL, Richardson JA, Hill JA, Olson EN (2004) Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development. Mol Cell Biol 24:8467–8476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chavan AV, Somani RR (2010) HDAC inhibitors–new generation of target specific treatment. Mini Rev Med Chem 10:1263–1276

    Article  CAS  PubMed  Google Scholar 

  • Cheng HL, Mostoslavsky R, Saito S, Manis JP, Gu Y, Patel P et al (2003) Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad Sci USA 100:10794–10799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cirstea IC, Kutsche K, Dvorsky R, Gremer L, Carta C, Horn D, Roberts AE, Lepri F, Merbitz-Zahradnik T, Konig R, Kratz CP, Pantaleoni F et al (2010) A restricted spectrum of NRAS mutations cause Noonan syndrome. Nat Genet 42:27–29

    Article  CAS  PubMed  Google Scholar 

  • Clapier CR, Cairns BR (2009) The biology of chromatin remodeling complexes. Ann Rev Biochem 78:273–304

    Article  CAS  PubMed  Google Scholar 

  • Collins RT, Kaplan P, Somes GW, Rome JJ (2010) Long-term outcomes of patients with cardiovascular abnormalities and William syndromes. Am J Cardiol 105(6):874–878

    Article  PubMed  Google Scholar 

  • Coppede F (2015) The genetics of folate metabolism and maternal risk of birth of a child with Down syndrome and associated congenital heart defects. Front Genet 25(6):223. doi:10.3389/fgene.2015.00223

    Google Scholar 

  • Dasgupta C, Martinez AM, Zuppan CW, Shah MM, Bailey LL, Fletcher WH (2001) Identification of connexin43 (alpha-1) gap junction gene mutations in patients with hypoplastic left heart syndrome by denaturing gradient gel electrophoresis (DGGE). Mutat Res 479:173–186

    Article  CAS  PubMed  Google Scholar 

  • Digilio MC, Conti E, Sarkozy A, Mingarelli R, Dottorini T, Marino B, Pizzuti A, Dallapiccola B (2002) Grouping of multiple-lentigines/LEOPARD and Noonan syndromes on the PTPN11 gene. Am J Hum Genet 71:389–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eldadah ZA, Hamosh A, Biery NJ, Montgomery RA, Duke M, Elkins R, Dietz HC (2001) Familial tetralogy of Fallot caused by mutation in the jagged1 gene. Hum Mol Genet 10:163–169

    Article  CAS  PubMed  Google Scholar 

  • Ewart AK, Jin W, Atkinson D, Morris CA, Keating MT (1994) Supravalvular aortic stenosis associated with a deletion disrupting the elastin gene. J Clin Invest 93:1071–1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fahed AC, Gelb BD, Seidman JG, Seidman CE (2013) Genetics of congenital heart disease the glass half empty. Circ Res 112:707–720

    Article  CAS  PubMed  Google Scholar 

  • Feng Q, Song W, Lu X, Hamilton JA, Lei M, Peng T, Yee SP (2002) Development of heart failure and congenital septal defects in mice lacking endothelial nitric oxide synthase. Circulation 106:873–879

    Article  CAS  PubMed  Google Scholar 

  • Freeman SB, Bean LH, Allen EG et al (2008) Ethnicity, sex, and the incidence of congenital heart defects: a report from the National Down Syndrome Project. Genet Med 10:173–180

    Article  PubMed  Google Scholar 

  • Garg V, Kathiriya IS, Barnes R et al (2003) GATA mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature 424:443–447

    Article  CAS  PubMed  Google Scholar 

  • Garg V, Muth AN, Ransom JF, Schluterman MK, Barnes R, King IN, Grossfeld PD, Srivastava D (2005) Mutations in NOTCH1 cause aortic valve disease. Nature 437:270–274

    Article  CAS  PubMed  Google Scholar 

  • Glissen C, Hoischen A, Brunner HG, Veltman JA (2012) Disease gene identification strategies for exome sequencing European. J Hum Genet 20:490–497

    Article  CAS  Google Scholar 

  • Goldmuntz E, Geiger E, Benson DW (2001) NKX2.5 mutations in patients with tetralogy of Fallot. Circulation 104:2565–2568

    Article  CAS  PubMed  Google Scholar 

  • Gotzsche CO, Kraq-Olsen B, Nielsen J, Sorensen KE, Kristensen BO (1994) Prevalence of cardiovascular malformations and association with cariotypes in Turner’s syndrome. Arch Dis Child 71(5):433–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffin HR, Hall DH, Topf A et al (2009) Genetic variation in VEGF does not contribute significantly to the risk of congenital cardiovascular malformation. PLoS ONE 4(3):e4978

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Han P, Hang CT, Yang J, Chang CP (2011) Chromatin remodeling in cardiovascular development and physiology. Circ Res 108(3):378–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hang CT, Yang J, Han P, Cheng HL, Shang C, Ashley E et al (2010) Chromatin regulation by Brg1 underlies heart muscle development and disease. Nature 466:62–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heathcote K, Braybrook C, Abushaban L, Guy M, Khetyar ME, Patton MA, Carter ND, Scambler PJ, Syrris P (2005) Common arterial trunk associated with a homeodomain mutation of NKX2.6. Hum Mol Genet 14:585–593

    Article  CAS  PubMed  Google Scholar 

  • Ho L, Crabtree GR (2010) Chromatin remodelling during development. Nature 463(7280):474–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffman JI, Kaplan S (2002) The incidence of congenital heart disease. J Am Coll Cardiol 39:1890–1900

    Article  PubMed  Google Scholar 

  • Holt M, Oram S (1960) Familial heart disease with skeletal malformations. Br Heart J 22:236–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horrillo A, Pezzolla D, Fraga MF, Aguilera Y, Salguero-Aranda C, Tejedo JR et al (2013) Zebularine regulates early stages of mESC differentiation: effect on cardiac commitment. Cell Death Dis 4(4):e570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iafrate A et al (2004) Detection of large scale variation in the human genome. Nat Genet 36(9):949–951

    Article  CAS  PubMed  Google Scholar 

  • Jerome LA, Papaioannou VWE (2001) DiGeorge syndrome phenotype in mice mutant for the T-Box gene, Tbx1. Nat Genet 27:286–291

    Article  CAS  PubMed  Google Scholar 

  • Junker R, Kotthoff S, Vielhaber H, Halimeh S, Kosch A, Koch HG et al (2001) Infant methylenetetrahydrofolate reductase 677TT genotype is a risk factor for congenital heart disease. Cardiovasc Res 51(2):251–254

    Article  CAS  PubMed  Google Scholar 

  • Kamath BM, Spinner NB, Emerick KM, Chudley AE, Booth C, Piccoli DA, Krantz ID (2004) Vascular anomalies in Alagille syndrome: a significant cause of morbidity and mortality. Circulation 109:1354–1358

    Article  PubMed  Google Scholar 

  • Karkera JD, Lee JS, Roessler E, Banerjee-Basu S, Ouspenskaia MV, Mez J, Goldmuntz E, Bowers P, Towbin J, Belmont JW, Baxevanis AD, Schier AF, Muenke M (2007) Loss-of-function mutations in growth differentiation factor-1 (GDF1) are associated with congenital heart defects in humans. Am J Hum Genet 81:987–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirk EP, Sunde M, Costa MW, Rankin SA, Wolstein O, Castro ML, Butler TL, Hyun C, Guo G, Otway R, Mackay JP, Waddell LB et al (2007) Mutations in cardiac T-box factor gene TBX20 are associated with diverse cardiac pathologies, including defects of septation and valvulogenesis and cardiomyopathy. Am J Hum Genet 81:280–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi J, Sano S, Oh H (2015) Epigenetic modification in congenital heart diseases by using stem cell technologies. Stem Cell Epigenet 2:e550. doi:10.14800/sce.550

    Google Scholar 

  • Kodo K, Nishizawa T, Furutani M, Arai S, Yamamura E, Joo K, Takahashi T, Matsuoka R, Yamagishi H (2009) GATA6 mutations cause human cardiac outflow tract defects by disrupting semaphorin-plexin signaling. Proc Natl Acad Sci 106:13933–13938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuehl K, Loffredo C, Lammer EJ, Iovannisci DM, Shaw GM (2010) Association of congenital cardiovascular malformations with 33 single nucleotide polymorphisms of selected cardiovascular disease-related genes. Birth Defects Res A 88(2):101–110

    CAS  Google Scholar 

  • Lalani SR, Safiullah AM, Molinari LM, Fernbach SD, Martin DM, Belmont JW (2004) SEMA3E mutation in a patient with CHARGE syndrome. J Med Genet 41:e94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lalani SR, Shaw C, Wang X, Patel A, Patterson LW, Kolodziejska K et al (2013) Rare DNA copy number variants in cardiovascular malformations with extracardiac abnormalities. Eur J Hum Genet 21:173–181

    Article  CAS  PubMed  Google Scholar 

  • Lambrechts D, Devriendt K, Driscoll DA et al (2005) Low expression VEGF haplotype increases the risk for tetralogy of Fallot: a family based association study. J Med Genet 42(6):519–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, Zhang J (2015) Circulating MicroRNAs: potential and emerging biomarkers for diagnosis of cardiovascular and cerebrovascular diseases. Biomed Res Int 2015:730535. doi:10.1155/2015/730535

    PubMed  PubMed Central  Google Scholar 

  • Li DY, Toland AE, Boak BB et al (1997) Elastin point mutations cause an obstructive vascular disease, supravalvular aortic stenosis. Hum Mol Genet 6(7):1021–1028

    Article  CAS  PubMed  Google Scholar 

  • Li D, Ji L, Liu L et al (2014) Characterization of circulating microRNA expression in patients with a ventricular septal defect. PLoS ONE 9:e106318

    Article  PubMed  PubMed Central  Google Scholar 

  • Lickert H, Takeuchi JK, Von Both I, Walls JR, McAuliffe F, Adamson SL, Henkelman RM, Wrana JL, Rossant J, Bruneau BG (2004) Baf60c is essential for function of BAF chromatin remodeling complexes in heart development. Nature 432(7013):107–112

    Article  CAS  PubMed  Google Scholar 

  • Lin X, Huo Z, Liu X, Zhang Y, Li L, Zhao H, Yan B, Liu Y, Yang Y, Chen YH (2010) A novel GATA6 mutation in patients with tetralogy of Fallot or atrial septal defect. J Hum Genet 55:662–667

    Article  CAS  PubMed  Google Scholar 

  • Loukanov T, Hoss K, Klimpel H, Arnold R, Sebening C, Karck M, Gorenflo M (2011) Endothelial nitric oxide synthase gene polymorphism (Glu298Asp) and acute pulmonary hypertension post cardiopulmonary bypass in children with congenital cardiac diseases. Cardiol Young 21(2):161–169

    Article  PubMed  Google Scholar 

  • Maitra M, Koenig SN, Srivastava D, Garg V (2010) Identification of GATA6 sequence variants in patients with congenital heart defects. Pediat Res 68:281–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin LJ, Pilipenko V, Kaufman KM, Cripe L, Kottyan LC, Keddache M et al (2014) Whole exome sequencing for familial bicuspid aortic valve identifies putative variants. Circ Cardiovasc Genet 7:677–683

    Article  CAS  PubMed  Google Scholar 

  • McDaniell R, Warthen DM, Sanchez-Lara PA, Pai A, Krantz ID, Piccoli DA, Spinner NB (2006) NOTCH2 mutations cause Alagille syndrome, a heterogeneous disorder of the Notch signaling pathway. Am J Hum Genet 79:169–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McElhinney DB, Geiger E, Blinder J, Benson DW, Goldmuntz E (2003) NKX2.5 mutations in patients with congenital heart disease. J Am Coll Cardiol 42:1650–1655

    Article  CAS  PubMed  Google Scholar 

  • Micale L, Turturo MG, Fusco C, Augello B, Jurado LAP, Izzi C, Digilio MC, Milani D, Lapi E, Zelante L, Merla G (2010) Identification and characterization of seven novel mutations of elastin gene in a cohort of patients affected by supravalvular aortic stenosis. Eur J Hum Genet 18:317–323

    Article  CAS  PubMed  Google Scholar 

  • Mills RE et al (2011) Mapping copy number variation by population scale genome sequencing. Nature 470(7332):59–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohapatra B, Casey B, Li H, Ho-Dawson T, Smith L, Fernbach SD, Molinari L, Niesh SR, Jefferies JL, Craigen WJ, Towbin JA, Belmont JW, Ware SM (2009) Identification and functional characterization of NODAL rare variants in heterotaxy and isolated cardiovascular malformations. Hum Mol Genet 18(5):861–871

    CAS  PubMed  Google Scholar 

  • Muncke N, Jung C, Rudiger H, Ulmer H, Roeth R, Hubert A, Goldmuntz E, Driscoll D, Goodship J, Schon K, Rappold G (2003) Missense mutations and gene interruption in PROSIT240, a novel TRAP240-like gene, in patients with congenital heart defect (transposition of the great arteries). Circulation 108:2843–2850

    Article  CAS  PubMed  Google Scholar 

  • Musewe NN, Alexander DJ, Teshima I et al (1990) Echocardiographic evaluation of the spectrum of cardiac anomalies associated with trisomy 13 and trisomy 18. J Am Coll Cardiol 15:673–677

    Article  CAS  PubMed  Google Scholar 

  • Niihori T, Aoki Y, Narumi Y, Neri G, Cave H, Verloes A, Okamoto N, Hennekam RCM, Gillessen-Kaesbach G, Wieczorek D, Kavamura MI, Kurosawa K et al (2006) Germline KRAS and BRAF mutations in cardio-facio-cutaneous syndrome. Nat Genet 38:294–296

    Article  CAS  PubMed  Google Scholar 

  • Nimura K, Ura K, Shiratori H, Ikawa M, Okabe M, Schwartz RJ et al (2009) A histone H3 lysine 36 trimethyltransferase links Nk2–5 to Wolf-Hirschhorn syndrome. Nature 460:287–291

    Article  CAS  PubMed  Google Scholar 

  • Pandit B, Sarkozy A, Pennacchio LA, Carta C, Oishi K, Martinelli S, Pogna EA, Schackwitz W, Ustaszewska A, Landstrom A, Bos JM, Ommen SR et al (2007) Gain-of-function RAF1 mutations cause Noonan and LEOPARD syndromes with hypertrophic cardiomyopathy. Nat Genet 39(8):1007–1012

    Article  CAS  PubMed  Google Scholar 

  • Park CY, Pierce SA, von Drehle M, Ivey KN, Morgan JA, Blau HM et al (2010) skNAC, a Smyd1-interacting transcription factor, is involved in cardiac development and skeletal muscle growth and regeneration. Pro Natl Acad Sci USA 107(48):20750–20755

    Article  CAS  Google Scholar 

  • Peng T, Wang L, Zhou SF, Li X (2010) Mutations of the GATA4 and NKX2.5 genes in Chinese pediatric patients with non-familial congenital heart disease. Genetica 138(11–12):1231–1240

    Article  CAS  PubMed  Google Scholar 

  • Pierpoint ME, Basson CT, Benson DW Jr, Gelb BC, Giglia TM, Goldmuntz E, McGee G, Sable CA, Srivastava D, Webb CL (2007) AHA scientific statement. Genetic basis for congenital heart defects: current knowledge. A scientific statement from the American Heart Association Congenital Cardiac Defects Committe, Council on Cardiovascular Disease in the young: endorsed by the american academy of pediatrics. Circulation 115:3015–3038

    Article  Google Scholar 

  • Pizzuti A, Sarkozy A, Newton AL, Conti E, Flex E, Digilio MC, Amati F, Gianni D, Tandoi C, Marino B, Crossley M, Dallapiccola B (2003) Mutations of ZFPM2/FOG2 gene in sporadic cases of tetralogy of Fallot. Hum Mutat 22:372–377

    Article  CAS  PubMed  Google Scholar 

  • Postma AV, Bezzina CR, Christoffels VM (2016) Genetics of congenital heart disease: the contribution of the noncoding regulatory genome. J Hum Genet 61:13–19

    Article  CAS  PubMed  Google Scholar 

  • Rajagopal SK, Ma Q, Obler D, Shen J, Manichaikul A, Tomita-Mitchell A, Boardman K, Briggs C et al (2012) An excess of deleterious variants in VEGF-A pathway genes in Down-syndrome-associated atrioventricular septal defects. Am J Hum Genet 91:646–659

    Article  CAS  Google Scholar 

  • Rauch R, Hofbeck M, Zweier C, Koch A, Zink S, Trautmann U, Hoyer J, Kaulitz R, Singer H, Rauch A (2010) Comprehensive genotype-phenotype analysis in 230 patients with tetralogy of Fallot. J Med Genet 47:321–331

    Article  CAS  PubMed  Google Scholar 

  • Redon R, Ishikawa S, Fitch KR et al (2006) Global variation in copy number in the human genome. Nature 444(7118):444–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richards AA, Garg V (2010) Genetics of congenital heart disease. Curr Card Rev 6:91–97

    Article  CAS  Google Scholar 

  • Roberts AE, Araki T, Swanson KD, Montgomery KT, Schiripo TA, Joshi VA, Li L, Yassin Y, Tamburino AM, Neel BG, Kucherlapati RS (2007) Germline gain-of-function mutations in SOS1 cause Noonan syndrome. Nat Genet 39:70–74

    Article  CAS  PubMed  Google Scholar 

  • Robertson G, Hirst M, Bainbridge M, Bilenky M, Zhao Y, Zeng T et al (2007) Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat Methods 4:651–657

    Article  CAS  PubMed  Google Scholar 

  • Rocha R, Soro I, Leitao A, Silva ML, Leao M (2012) Moyamoya vascular pattern in Alagille syndrome. Pediat Neurol 47:125–128

    Article  PubMed  Google Scholar 

  • Rodriguez-Viciana P, Tetsu O, Tidyman WE, Estep AL, Conger BA, Santa Cruz M, McCormick F, Rauen KA (2006) Germline mutations in genes within the MAPK pathway cause cardio-facio-cutaneous syndrome. Science 311:1287–1290

    Article  CAS  PubMed  Google Scholar 

  • Romano AA, Allanson JE, Dahlgren J et al (2010) Noonan syndrome: clinical features, diagnosis, and management guideline. Pediatrics 126:746–759

    Article  PubMed  Google Scholar 

  • Rossaak JI, Van Rij AM, Jones GT, Harris EL (2000) Association of the 4G/5G polymorphism in the promoter region of plasminogen activator inhibitor-1 with abdominal aortic aneurysms. J Vasc Surg 31(5):1026–1032

    Article  CAS  PubMed  Google Scholar 

  • Ryan AK, Goodship JA, Wilson DI et al (1997) Spectrum of clinical features associated with interstitial chromosome 22q11 deletions: a European collaborative study. J Med Genet 34:798–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarkozy A, Carta C, Moretti S, Zampino G, Digilio MC, Pantaleoni F, Scioletti AP, Esposito G, Cordeddu V, Lepri F, Petrangeli V, Dentici ML et al (2009) Germline BRAF mutations in Noonan, LEOPARD, and cardiofaciocutaneous syndromes: molecular diversity and associated phenotypic spectrum. Hum Mutat 30:695–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schott JJ, Benson DW, Basson CT, Pease W, Silberbach GM, Moak JP, Maron BJ, Seidman CE, Seidman JG (1998) Congenital heart disease caused by mutations in the transcription factor NKX2-5. Science 281:108–111

    Article  CAS  PubMed  Google Scholar 

  • Schubbert S, Zenker M, Rowe SL, Boll S, Klein C, Bollag G, van der Burgt I, Musante L, Kalscheuer V, Wehner LE, Nguyen H, West B, Zhang KYJ, Sistermans E, Rauch A, Niemeyer CM, Shannon K, Kratz CP (2006) Germline KRAS mutations cause Noonan syndrome. Nat Genet 38:331–336

    Article  CAS  PubMed  Google Scholar 

  • Schulz AL, Albrecht B, Arici C, van der Burgt I, Buske A, Gillessen-Kaesbach G, Heller R, Horn D, Hubner CA, Korenke GC, Konig R, Kress W et al (2008) Mutation and phenotypic spectrum in patients with cardio-facio-cutaneous and Costello syndrome. Clin Genet 73:62–70

    Article  CAS  PubMed  Google Scholar 

  • Sebat J et al (2004) Large-scale copy number polymorphism in the human genome. Science 305(5683):525–528

    Article  CAS  PubMed  Google Scholar 

  • Serra-Juhe C, Cusco I, Homs A, Flores R, Toran N, Perez-Jurado LA (2015) DNA methylation abnormalities in congenital heart disease. Epigenetics 10(2):167–177. doi:10.1080/15592294.2014.998536

    Article  PubMed  PubMed Central  Google Scholar 

  • Shaw GM, Iovannisci DM, Yang W, Finnell RH, Carmichael SL, Cheng S et al (2005) Risks of human conotruncal heart defects associated with 32 single nucleotide polymorphisms of selected cardiovascular disease-related genes. Am J Med Genet A 138(1):21–26

    Article  PubMed  Google Scholar 

  • Sletten LJ, Pierpont MEM (1996) Variation in severity of cardiac disease in Holt–Oram syndrome. Am J Med Genet 65:128–132

    Article  CAS  PubMed  Google Scholar 

  • Smith T, Rajakaruna C, Caputo M, Emanueli C (2015) MicroRNAs in congenital heart disease. Ann Transl Med 3(21):333. doi:10.3978/j.issn.2305-5839.2015.12.25

    PubMed  PubMed Central  Google Scholar 

  • Soemedi R, Wilson IJ, Bentham J et al (2012) Contribution of global rare copy-number variants to the risk of sporadic congenital heart disease. Am J Hum Genet 91:489–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorensen KM, El-Segaler M, Fernlund E, Errami A, Bouvagnet P, Nehme N et al (2012) Screening of congenital heart disease patients using multiplex ligation-dependent probe amplification: early diagnosis of syndromic patients. Am J Med Genet 158A(4):720–725

    Article  PubMed  CAS  Google Scholar 

  • Springett A, Wellesley D, Greenlees R, Loane M, Addor MC, Arriola L, Bergman J, Cavero-Carbonell C et al (2015) Congenital anomalies associated with trisomy 18 or trisomy 13: a register-based study in 16 European countries, 2000–2001. Am J Med Genet A 167(12):3062–3069

    Article  CAS  Google Scholar 

  • Stallmeyer B, Fenge H, Nowak-Gottl U, Schulze-Bahr E (2010) Mutational spectrum in the cardiac transcription factor gene NKX2.5 (CSX) associated with congenital heart disease. Clin Genet 78:533–540

    Article  CAS  PubMed  Google Scholar 

  • Stankiewicz P, Lupski JR (2010) Structural variation in the human genome and its role in disease. Ann Rev Med 61:437–455

    Article  CAS  PubMed  Google Scholar 

  • Sudmant PH et al (2010) Diversity of human copy number variation and multycopy genes. Science 330(6004):641–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sybert VP, McCauley E (2004) Turner’s syndrome. N Engl J Med 351:1227–1238

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi JK, Lou X, Alexander JM, Sugizaki H, Delgado-Olguin P, Holloway AK et al (2011) Chromatin remodelling complex dosage modulates transcription factor function in heart development. Nat Commun 2:187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tartaglia M, Mehler EL, Goldberg R, Zampino G, Brunner HG, Kremer H, van der Burgt I, Crosby AH, Ion A, Jeffery S, Kalidas K, Patt MA, Kucherlapati RS, Gelb BD (2001) Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat Genet 29:465–468

    Article  CAS  PubMed  Google Scholar 

  • Ta-Shma A, El-lahham N, Edvardson S, Stepensky P, Nir A, Perles Z, Gavri S, Golender J, Yaakobi-Simhayoff N, Shaag A, Rein AJJT, Elpeleg O (2014) Conotruncal malformations and absent thymus due to a deleterious NKX2-6 mutation. J Med Genet 51:268–270

    Article  CAS  PubMed  Google Scholar 

  • Tomita-Mitchell A, Maslen CL, Morris CD, Garg V, Goldmuntz E (2007) GATA4 sequence variants in patients with congenital heart defects. J Med Genet 44:779–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomita-Mitchell A, Mahnke DK, Struble CA, Tuffnell ME, Stamm KD, Hidestrand M et al (2012) Human gene copy number spectra analysis in congenital heart malformations. Physiol Genom 44:518–541

    Article  CAS  Google Scholar 

  • Van Beynum IM, den Heijer M, Blom HJ, Kapusta L (2007) The MTHFR 677C-> T polymorphism and the risk of congenital heart defects: a literature review and meta-analysis. Q J Med 100(12):743–753

    Article  Google Scholar 

  • Van Beynum IM, Mooji C, Kapusta L, Heil S, den Heijer M, Blom HJ (2008) Common 894G > T single nucleotide polymorphism in the gene coding for endothelial nitric oxide synthase (eNOS) and risk of congenital heart defects. Clin Chem Lab Med 46(10):1369–1375

    PubMed  Google Scholar 

  • Van Praagh S, Truman T, Firpo A, Bang-Rodrigo A, Fried R, McManus B, Engle MA, Van Praagh R (1989) Cardiac malformations in trisomy-18: a study of 41 postmortem cases. JACC 13(7):1586–1597

    Article  PubMed  Google Scholar 

  • Waldron L, Steimle JD, Greco TM, Gomez NC, Dorr KM, Kweon J, Temple B et al (2016) The cardiac TBX% interactome reveals a chromatin remodeling network essential for cardiac septation. Dev Cell 36(3):262–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Xin YF, Liu XY, Liu ZM, Wang XZ, Yang YQ (2011) A novel NKX2-5 mutation in familial ventricular septal defect. Int J Mol Med 27:369–375. doi:10.3892/ijmm.2010.585

    CAS  PubMed  Google Scholar 

  • Wang W, Hou Z, Wang C, Wei C, Li Y, Jiang L (2013) Association between 5,10- methylenetetrahydrofolate reductase (MTHFR) polymorphisms and congenital heart disease: a meta-analysis. Meta Gene 1:109–125

    Article  PubMed  PubMed Central  Google Scholar 

  • Ware SM, Harutyunyan KG, Belmont JW (2006) Heart defects in X-linked heterotaxy: evidence for a genetic interaction of Zic3 with the nodal signaling pathway. Dev Dyn 235:1631–1637

    Article  CAS  PubMed  Google Scholar 

  • Xie J, Yi L, Xu ZF et al (2007) VEGF C-634G polymorphism is associated with protection from isolated ventricular septal defect: case-control and TDT studies. Eur J Hum Genet 15(12):1246–1251

    Article  CAS  PubMed  Google Scholar 

  • Xie W, Zhou L, Chen Y, Ni B (2016) Circulating microRNAs as potential biomarkers for diagnosis of congenital heart defects. World J Emerg Med 7(2):85–89

    Article  PubMed  PubMed Central  Google Scholar 

  • Yanagawa B, Lovren F, Pan Y et al (2012) miRNA-141 is a novel regulator of BMP-2-mediated calcification in aortic stenosis. J Thorac Cardiovasc Surg 144:256–262

    Article  CAS  PubMed  Google Scholar 

  • Zaidi S, Choi M, Wakimoto H, Ma L, Jiang J, Overton JD et al (2013) De novo mutations in histone-modifying genes in congenital heart disease. Nature 498:220–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Li X, Shen A, Jiao W, Guan X, Li Z (2008) GATA4 mutations in 486 Chinese patients with congenital heart disease. Eur J Med Genet 51:527–535

    Article  PubMed  Google Scholar 

  • Zhao Y, Samal E, Srivastava D (2005) Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 436:214–220. doi:10.1038/nature03817

    Article  CAS  PubMed  Google Scholar 

  • Zhu S, Cao L, Zhu J et al (2013) Identification of maternal serum microRNAs as novel non-invasive biomarkers for prenatal detection of fetal congenital heart defects. Clin Chim Acta 424:66–72

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The present work was partially supported by the Research Project No 27/11.12.2013 and financed by University of Medicine and Pharmacy, Tîrgu Mureş, Romania.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodica Togănel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muntean, I., Togănel, R. & Benedek, T. Genetics of Congenital Heart Disease: Past and Present. Biochem Genet 55, 105–123 (2017). https://doi.org/10.1007/s10528-016-9780-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-016-9780-7

Keywords

Navigation