Skip to main content

Advertisement

Log in

Genetic Diversity of Chinese Water Deer (Hydropotes inermis inermis): Implications for Conservation

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

The Chinese water deer (Hydropotes inermis inermis) is endemic to China. Historically, the species was widely distributed, but now, habitat loss and poaching have reduced its range and number drastically. In order to provide useful information for its conservation, we have investigated the genetic diversity and population structure of the Chinese water deer by analyzing the 403 bp fragment of the mitochondrial DNA (mtDNA) control region (D-loop). Eighteen different haplotypes were detected in 40 samples. Overall, Chinese water deer have a relatively high-genetic diversity compared to other rare cervid species, with a haplotype diversity of 0.923±0.025 and nucleotide diversity of 1.318 ± 0.146%. No obvious phylogenetic structure among haplotypes was found for samples of different origin. An analysis of molecular variance (AMOVA) showed significant differentiation between the Zhoushan and the mainland population (FST= 0.088, P < 0.001; Φ ST = 0.075, P = 0.043), which suggests that exchanges of individuals between Zhoushan and the mainland should be avoided. We also recommend that a breeding center be set up for the mainland population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  • Allen, G. M. (1940). The mammals of China and Mongolia. Am. Mus. Nat. Hist. 2:1138–1142.

    Google Scholar 

  • Aquadro, C. F., and Greenberg, B. D. (1983). Human mitochondrial DNA variation and evolution: Analysis of nucleotide sequences from seven individuals. Genetics 103:287–312.

    PubMed  CAS  Google Scholar 

  • Balakrishnan, C. N., Monfort, S. L., Gaur, A., Singh, L., and Sorenson, M. D. (2003). Phylogeography and conservation genetics of Eld's deer (Cervus eldi). Mol. Ecol. 12:1–10.

    Article  PubMed  CAS  Google Scholar 

  • Clement, M., Posada, D., and Crandall, K. A. (2000) TCS: A computer program to estimate gene genealogies. Mol. Ecol. 9:1657–1659.

    Article  PubMed  CAS  Google Scholar 

  • Cooke, A., and Farrell, L. (1998). Chinese Water Deer, Mammal Society and British Deer Society, London.

    Google Scholar 

  • Douzery, E., and Randi, E. (1997). The mitochondrial control region of cervidae: Evolutionary patterns and phylogenetic content. Mol. Biol. Evol. 14:1154–1166.

    PubMed  CAS  Google Scholar 

  • Excoffier, L., Smouse, P. E., and Quattro, J. M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131:479–491.

    PubMed  CAS  Google Scholar 

  • Frankham, R., Ballou, J. D., and Briscoe, D. A. (2002). Introduction to Conservation Genetics, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Fu, Y. X., and Li, W. H. (1993). Statistical tests of neutrality of mutations. Genetics 133:693–709.

    PubMed  CAS  Google Scholar 

  • Garner, K. J., and Ryder, O. A. (1996). Mitochondrial DNA diversity in Gorillas. Mol. Biol. Evol. 6:39–48.

    CAS  Google Scholar 

  • Guo, G. P., and Zhang, E. D. (2002). The distribution of the Chinese water deer (Hydropotes inermis) in Zhoushan Archipelago, Zhejiang province, China. Acta Theriol. Sin. 22:98–107. (in Chinese with English abstract).

    Google Scholar 

  • Hilton-Taylor, C. (2000). 2000 IUCN Red List of Threatened Species. IUCN, World Conservation Union, Gland, Switzerland.

  • Kumar, S., Tamura, K., Jakobsen, I. B., and Nei, M. (2001). MEGA 2.1: Molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245.

    Article  PubMed  CAS  Google Scholar 

  • Nagata, J., Masuda, R., Kaji, K., Kaneko, M., and Yoshida, M. C. (1998). Genetic variation and population of Japanese sika deer (Cervus nippon) in Hokkaido Island, based on mitochondrial D-loop sequences. Mol. Ecol. 7:871–877.

    Article  PubMed  CAS  Google Scholar 

  • Nei, M., Maruyama, T., and Chakraborty, R. (1975). The bottleneck effect and genetic variability in populations. Evolution 29:1–10.

    Article  Google Scholar 

  • Rozas, J., and Rozas, R. (1999). DnaSP version 3: An integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics 15:174–175.

    Article  PubMed  CAS  Google Scholar 

  • Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual, 2nd edn., Cold Spring Harbor Laboratory Press, New York.

    Google Scholar 

  • Schneider, S., Roessli, D., and Excoffer, L., (2000). Arlequin Version 2.000: A Software for Population Genetics Data Analysis, Genetics and Biometry Laboratory, University of Geneva, Switzerland.

    Google Scholar 

  • Sheng, H. L. (1992). The Deer in China, East China Normal University Press, Shanghai, P.R. China (in Chinese).

  • Sheng, H. L., and Lu, H. J. (1985). Cervid resources in subtropical and tropical areas of China. J. East China Norm. Univ., Sci. Ed. 1:96–104 (in Chinese).

    Google Scholar 

  • Shi, Y. F., Shan, X. N., Li, J., Shi, T. Y., and Zheng, A. L. (2004). Sequence analysis and phylogeny of deer (Cervidae) mtDNA control regions. Acta Genet. Sin. 31:395–402 (in English with Chinese abstract).

    PubMed  CAS  Google Scholar 

  • Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595.

    PubMed  CAS  Google Scholar 

  • Tamura, K., and Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial-DNA in humans and chimpanzees. Mol. Biol. Evol. 10:512–526.

    PubMed  CAS  Google Scholar 

  • Templeton, A. R., Crandall, K. A., and Sing, C. F. (1992). A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data: 3, Cladogram estimation. Genetics 132:619–633.

    PubMed  CAS  Google Scholar 

  • Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., and Higgins, D. G. (1997). The Clustal X Windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25:4876–4882.

    Article  PubMed  CAS  Google Scholar 

  • Wan, Q. H., Wu, H., Fujhara, T., and Fang, S. G. (2004). Which genetic marker for which conservation genetics issue? Electrophoresis 25:2165–2176.

    Article  PubMed  CAS  Google Scholar 

  • Wang, H. Z., and Liu, B. P. (1980). Geological History Tutorial, Geological Press, Beijing (in Chinese).

    Google Scholar 

  • Wang, S. (1998). China Red Data Book of Endangered Animals (Mammal Volume), Science Press, Beijing (in Chinese).

    Google Scholar 

  • Weir, B. S., and Cockerham, C. C. (1984). Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370.

    Article  Google Scholar 

  • Wu, H. L., and Fang, S. G. (2005). MtDNA genetic diversity of black muntjac (Muntiacus crinifrons): An endangered species endemic to China. Biochem. Genet. 43:407–416.

    Article  PubMed  CAS  Google Scholar 

  • Wu, H., Wang, Q. H., and Fang, S. G. (2004). Two genetically distinct units of the Chinese sika deer (Cervus nippon): Analyses of mitochondrial DNA variation. Biol. Conserv. 119:183–190.

    Article  Google Scholar 

  • Xu, H. F., Lu, H. J., and Liu, X. P. (1996). The current status and habitat use of Chinese water deer in the coast of Jiangsu Province. Zool. Res. 17:217–224 (in Chinese with English abstract).

    Google Scholar 

  • Xu, H. F., Zheng, X. Z., and Lu, H. J. (1998). Impact of human activities and habitat changes on distribution of Chinese water deer along the coast area in northern Jiangsu. Acta Theriol. Sin. 18:161–167 (in Chinese with English abstract).

    MATH  Google Scholar 

  • Zhang, B., Fang, S. G., and Xi, Y. M. (2004). Low genetic diversity in the endangered crested ibis Nipponia nippon and implications for conservation. Bird Conserv. Int. 14:183–190.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

First, we are grateful to Prof. H. L. Sheng, who kindly provided us with useful advice and samples. We thank Ms. N. Y. Ji (Nanjing Hongshan Zoo), Mr. Hao J, Mr. Z. A. Wu (Hefei Zoo), and Mr. H. Y. Yu (Zhoushan Baiquan Chinese Water Deer Breeding Center) for their help with sample collection. We also thank Dr. H. Wu, Dr. Y. C. Xu, and Dr. B. Zhang for helping us to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-Guo Fang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, J., Fang, SG. & Wan, QH. Genetic Diversity of Chinese Water Deer (Hydropotes inermis inermis): Implications for Conservation. Biochem Genet 44, 156–167 (2006). https://doi.org/10.1007/s10528-006-9020-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-006-9020-7

KEY WORDS:

Navigation