Skip to main content
Log in

Evaluation of Steinernema carpocapsae survival and infectivity after cryopreservation

  • Published:
BioControl Aims and scope Submit manuscript

Abstract

A cryopreservation protocol, with an optimum survival rate of 86.8 %, was developed for a strain of Steinernema carpocapsae (Weiser) ItS-CAO1 isolated in a lagoon plain in Veneto Region (northern Italy). Some laboratory bioassays were carried out against Galleria mellonella (L.) (Lepidoptera: Pyralidae) larvae to determine the infectivity and stability of this strain after cryopreservation. Insect mortality was very high in different assays (sand column and penetration assays), while the percentage of penetrating infective juveniles was 59.4 and 33.8 respectively. Larval mortality in a one-on-one quality assay was 66.6 % while in an exposure time assay the exposure time to nematodes required to achieve 50 % insect mortality was lower than 20 min. With the results of infectivity assays we can evaluate the possibility to use cryopreservation for long-term storage of entomopathogenic nematodes for biological control programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bai C, Shapiro-Ilan DI, Gaugler R, Shuxia Y (2004) Effect of entomopathogenic nematode concentration on survival during cryopreservation in liquid nitrogen. Journal of Nematology 36(3):281–284

    PubMed  PubMed Central  Google Scholar 

  • Bai C, Shapiro-Ilan DI, Gaugler R, Hopper KR (2005) Stabilization of beneficial traits in Heterorhabditis bacteriophora through creation of inbred lines. Biol Control 32:220–227

    Article  Google Scholar 

  • Bednarek A, Nowicki T, Wojcik WF (1986) Sex structure in populations of Steinernema feltiae. Zesz. Probl. Postepow Nauk Roln. 323:213–223

    Google Scholar 

  • Begley JW (1990) Efficacy against insects in habitats other than soil. In: Gaugler R, Kaya HK (eds) Entomopathogenic nematodes in biological control. CRC Press, Boca Raton, pp 215–231

    Google Scholar 

  • Behm C (1997) The role of trehalose in the physiology of nematodes. Int J Parasitol 27:215–229

    Article  CAS  PubMed  Google Scholar 

  • Bilgrami AL, Gaugler R, Shapiro-Ilan DI, Adams BJ (2006) Source of trait deterioration in entomopathogenic nematodes Heterorhabditis bacteriophora and Steinernema carpocapsae during in vivo culture. Nematology 8(3):397–409

    Article  Google Scholar 

  • Boemare N (2002) Biology, taxonomy and systematic of Phothorhabdus and Xenorhabdus. In: Gaugler R (ed) Entomopathogenic nematology. CAB International, Wallingford, pp 35–56

    Chapter  Google Scholar 

  • Campos-Herrera R, Gutierrez C (2009) A laboratory study on the activity of Steinernema feltiae (Rhabditida: Steinernematidae) Rioja strain against horticultural insect pests. J Pest Sci 82:305–309

    Article  Google Scholar 

  • Caroli L, Glazer I, Gaugler R (1996) Entomopathogenic nematode infectivity assay: multi variable comparison of penetration into different hosts. Biocontrol Sci Tech 6:227–233

    Article  Google Scholar 

  • Cosi E, Triggiani O, Irdani T, Tarasco E, Roversi PF (2008) First results of entomopathogenic nematodes cryopreservation in liquid nitrogen and storage at −140°C. REDIA XCI:181–183

  • Curran JC, Gilbert C, Butler K (1992) Routine cryopreservation of isolates of Steinernema and Heterorhabditis spp. Journal of Nematology 24:269–270

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gaugler R, Kaya HK (1990) Entomopathogenic nematodes in biological control. CRC Press Inc, Boca Raton

    Google Scholar 

  • Glazer I (1991) Invasion rate as a measure of infestivity of steinernematid and heterorhabditid nematodes to insects. J Invertebr Pathol 59:90–94

    Article  Google Scholar 

  • Glazer I, Lewis EE (2000) Bioassays for entomopathogenic nematodes. In: Navon A, Ascher KRS (eds) Bioassays of entomopathogenic microbes and nematodes. CABI Publishing, Wallingford, pp 229–247

    Chapter  Google Scholar 

  • Grewal PS, Selvan S, Lewis EE, Gaugler R (1993) Male insect-parasitic nematodes: a colonizing sex. Experientia 49:605–608

    Article  Google Scholar 

  • Griffin CT, Downes MJ (1994) Recognition of low temperature active isolates of the entomopathogenic nematode Heterorhabditis. Nematologica 37:83–91

    Article  Google Scholar 

  • Irdani T, Carletti B, Ambrogioni L, Roversi PF (2006) Rapid-cooling and storage of plant nematodes at −140 °C. Cryobiology 52:319–322

    Article  PubMed  Google Scholar 

  • Irdani T, Scotto C, Roversi PF (2011) Low cryoprotectant concentrations and fast cooling for nematode cryostorage. Cryobiology 63:12–16

    Article  CAS  PubMed  Google Scholar 

  • Jagdale GB, Grewal PS (2003) Acclimation of entomopathogenic nematodes to novel temperatures: Trehalose accumulation and the acquisition of thermotolerance. Int J Parasitol 33:145–152

    Article  CAS  PubMed  Google Scholar 

  • Kaya HK, Stock SP (1997) Techniques in insect nematology. In: Lacey LA (ed) Techniques in insect pathology. Academic Press, London, pp 281–324

    Chapter  Google Scholar 

  • Klein MG (1990) Efficacy against soil-inhabiting insect pests. In: Gaugler R, Kaya H (eds) Entomopathogenic nematodes in biological control. CRC Press, Boca Raton, pp 195–214

    Google Scholar 

  • Leopold RA (1998) Cold storage of insects for integrated pest management. In: Hallman GJ, Dellinger DL (eds) Temperature sensitivity in insects and application in integrated pest management. Westview Press, Boulder, pp 235–267

    Google Scholar 

  • Mazur P (1985) Basic concepts in freezing cells. Proceeding of the first International Conference on Deep freezing of Boar Semen, Uppsala, pp 99–111

  • Mazur P, Schneider U, Mahowald AP (1992) Characteristics and kinetics of subzero chilling injury in Drosophila embryos. Cryobiology 29:39–68

    Article  CAS  PubMed  Google Scholar 

  • Miller RW (1989) Novel pathogenicity assessment technique for Steinernema and Heterorhabditis entomopathogenic nematodes. Journal of Nematology 21:574 (Abstr.)

  • Nugent MJ, O’Leary SA, Burnell AM (1996) Optimised procedures for the cryopreservation of different species of Heterorhabditis. Fundamental and Applied Nematology 19:1–6

    Google Scholar 

  • Poinar GO Jr (1990) Biology and taxonomy of Steinernematidae and Heterorhabditidae. In: Gaugler R, Kaya HK (eds) Entomopathogenic nematodes in biological control. CRC Press, Boca Raton, pp 23–61

    Google Scholar 

  • Popiel I, Vasquez EM (1991) Cryopreservation of Steinernema carpocapsae and Heterorhabditis bacteriophora. Journal of Nematology 21:432–437

    Google Scholar 

  • Qiu L, Bedding RA (1999) Low temperature induced cryoprotectants synthesis by the infective juveniles of Steinernema carpocapsae: its biological significance and the mechanism involved. Cryo letters 20(6):393–404

    CAS  Google Scholar 

  • Roversi PF, Cosi E, Irdani T (2008) Chill sensitivity and cryopreservation of eggs of the greater wax moth Galleria mellonella (Lepidoptera: Pyralidae). Cryobiology 56:1–7

    Article  CAS  PubMed  Google Scholar 

  • Sayre RM, Hwang SW (1975) Freezing and storing Ditylenchus dipsaci in liquid nitrogen. Journal of Nematology 7:199–202

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shapiro DI, Glazer I, Segal D (1996) Trait stability and fitness of the heat tolerant entomopathogenic nematode Heterorhabditis bacteriophora IS5 strain. Biol Control 6:238–244

    Article  Google Scholar 

  • Stock SP, Pryor BM, Kaya HK (1999) Distribution of entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) in natural habitats in California, USA. Biodivers Conserv 8:535–549

    Article  Google Scholar 

  • Torrini G, Landi S, Benvenuti C, De Luca F, Fanelli E, Troccoli A, Tarasco E, Bazzoffi P, Roversi PF (2014) Morphological and molecular characterization of a Steinernema carpocapsae (Nematoda Steinernematidae) strain isolated in Veneto region (Italy). REDIA XCVII:89–94

  • van der Beek HJG, Veldhuis WBJ, Zijlstra C, van Silfhout CH (1996) Preservation of Meloidogyne hapla and M. chitwoodi in liquid nitrogen: Differences in response between populations. Fundamental and Applied Nematology 19:227–234

    Google Scholar 

  • Wang XD, Grewal PS (2002) Rapid genetic deterioration of environmental tolerance and reproductive potential of an entomopathogenic nematode during laboratory maintenance. Biol Control 23:71–78

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks to Peter Christie for the English revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Torrini.

Additional information

Handling Editor: Ralf Elhers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torrini, G., Landi, S., Tarasco, E. et al. Evaluation of Steinernema carpocapsae survival and infectivity after cryopreservation. BioControl 61, 461–469 (2016). https://doi.org/10.1007/s10526-016-9724-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-016-9724-5

Keywords

Navigation