Skip to main content
Log in

Allelopathic and autotoxicity effects of barley (Hordeum vulgare L. ssp. vulgare) root exudates

  • Published:
BioControl Aims and scope Submit manuscript

Abstract

The allelopathic activity of barley (Hordeum vulgare L. ssp. vulgare) root exudates was studied by comparing their effects on seedling establishment in barley itself and in two weed species, Bromus diandrus Roth. and Lolium rigidum Gaudin, using an original laboratory protocol, named ‘seed-after-seed’. In this protocol, the donor and the receiver species of water-soluble allelochemicals are grown one after the other in the same dishes, in conditions reducing resource competition between both species. Growth of all receptive species (weeds and barley) was inhibited in a dose-dependent manner, when using increasing barley seed densities (0, 8, 19 and 25 seeds per Petri dish). In our conditions, the barley varieties and landraces exhibited different allelopathic activities against weeds or barley. The allelopathic potential of the barley root exudates was also dependent on the receiver species. Indeed, the released allelochemicals proved to be more toxic against the weed plants than on barley itself. Furthermore, the toxicity of the allelochemicals increased after their release by roots, between day 0 and day 6. These allelochemicals might contribute to the plant community dynamics and their usefulness as bio-herbicides deserves further consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baghestani A, Lemieux C, Leroux GD, Baziramakenga R (1999) Determination of allelochemicals in spring cereal cultivars of different competitiveness. Weed Sci 47:498–504

    CAS  Google Scholar 

  • Barria BN, Copaja SV, Niemeyer HM (1992) Occurrence of DIBOA in wild Hordeum species and its relation to aphid resistance. Phytochemistry 31:89–91

    Article  CAS  Google Scholar 

  • Ben Haj Salah H, Kilani H, Souissi T, Latiri K, Dahmane ABK (2005) Etude de la biologie du grand brome (Bromus diandrus Roth.) : Cycle de développement du brome seul et en association avec le blé. Revue de L’INAT 20(2):35–49

  • Ben-Hammouda M, Kremer RJ, Minor HC, Sarwar M (1995) A chemical basis for differential allelopathic potential of sorghum hybrids on wheat. J Chem Ecol 21:775–786

    Article  CAS  PubMed  Google Scholar 

  • Ben-Hammouda M, Ghorbal H, Kremer RJ, Oueslati O (2002) Autotoxicity of barley. J Plant Nutr 25:1155–1161

    Article  CAS  Google Scholar 

  • Bertholdsson NO (2004) Variation in allelopathic activity over 100 years of barley selection and breeding. Weed Res 44:78–86

    Article  Google Scholar 

  • Chon SU, Kim YM (2004) Herbicidal potential and quantification of suspected allelochemicals from four grass crop extracts. J Agron Crop Sci 190:145–150

    Article  CAS  Google Scholar 

  • Deghaïs M, El Felah M, Gharbi MS, Zarkouna T, Chakroun M (1999) Les acquis de l’amélioration génétique des céréales en Tunisie. Annales de l’INRAT 72:21–27

    Google Scholar 

  • Fiers M, Lognay G, Fauconnier ML, Jijakli MM (2013) Volatile compound-mediated interactions between barley and pathogenic fungi in the soil. PLoS ONE 8(6):1–18

    Article  Google Scholar 

  • Fuerst ER, Putnam AR (1983) Separating the competitive and allelopathic components of interference: theoretical principles. J Chem Ecol 9:937–944

    Article  CAS  PubMed  Google Scholar 

  • Fujii Y (2001) Screening and future exploitation of allelopathic plant as alternative herbicides with special reference to hairy vetch. J Crop Prot 4:257–275

    Article  Google Scholar 

  • Gagliardo RW, Chilton WS (1992) Soil transformation of 2(3H)-benzoxazolone of rye into phytotoxic 2-amino-3H-phenoxazin-3-one. J Chem Ecol 18:1683–1691

    Article  CAS  PubMed  Google Scholar 

  • Gasquez J (2000) Extension des graminées adventices résistantes aux antigraminées foliaires en France. In: Proceedings of the XI international conference on weed biology. Association Française de Protection des Plantes, Dijon, France, pp 485–492

  • Gfeller A, Laloux M, Barsics F, Kati DE, Haubruge E, du Jardin P, Verheggen FJ, Lognay G, Wathelet JP, Fauconnier ML (2013) Characterization of volatile organic compounds emitted by barley (Hordeum vulgare L.) roots and their attractiveness to wireworms. J Chem Ecol 39:1129–1139

    Article  CAS  PubMed  Google Scholar 

  • Gianoli E, Niemeyer HM (1998) DIBOA in wild Poaceae: sources of resistance to the Russian wheat aphid (Diuraphis noxia) and the greenbug (Schizaphis graminum). Euphytica 102:317–321

    Article  Google Scholar 

  • Grün S, Frey M, Gierl A (2005) Evolution of the indole alkaloid biosynthesis in the genus Hordeum: distribution of gramine and DIBOA and isolation of the benzoxazinoid biosynthesis genes from Hordeum lechleri. Phytochemistry 66:1264–1272

    Article  PubMed  Google Scholar 

  • Gubbels GH, Kenaschuk EO (1989) Agronomic performance of flax grown on canola, barley and flax stubble with and without tillage prior to seeding. Can J Plant Sci 69:31–38

    Article  Google Scholar 

  • Hoult AHC, Lovett JV (1993) Biologically active secondary metabolites of barley. III. A method for identification and quantification of hordenine and gramine in barley by high-performance liquid chromatography. J Chem Ecol 19:2245–2254

    Article  CAS  PubMed  Google Scholar 

  • Inderjit S (2001) Soil: environmental effects on allelochemical activity. Agron J 93:79–84

    CAS  Google Scholar 

  • Inderjit S (2005) Soil microorganisms: an important determinant of allelopathic activity. Plant Soil 274:227–236

    Article  CAS  Google Scholar 

  • Kellner M, Kolodinska Brantestam A, Ahman I, Ninkovic V (2010) Plant volatile-induced aphid resistance in barley cultivars is related to cultivar age. Theor Appl Genet 121:1133–1139

    Article  CAS  PubMed  Google Scholar 

  • Kremer R, Ben-Hammouda M (2009) Allelopathic plants. 19. Barley (Hordeum vulgare L.). Allelopath J 24(2):225–242

  • Kushima M, Kakuta H, Kosemura S, Yamamura S, Yamada K, Yokotani-Tomita K, Hasegawa K (1998) An allelopathic substance exuded from germinating watermelon seeds. Plant Growth Regul 25:1–4

    Article  CAS  Google Scholar 

  • Lanoue A, Burlat V, Henkes GJ, Koch I, Schurr U, Röse USR (2010) De novo biosynthesis of defense root exudates in response to Fusarium attack in barley. New Phytol 185:577–588

    Article  CAS  PubMed  Google Scholar 

  • Laterra P, Bazzalo ME (1999) Seed-to-seed allelopathic effects between two invaders of burned Pampa grasslands. Weed Res 39:297–308

    Article  Google Scholar 

  • Liu DL, Lovett JV (1993a) Biologically active secondary metabolites of barley. I. Developing techniques and assessing allelopathy in barley. J Chem Ecol 19:2217–2230

    Article  CAS  PubMed  Google Scholar 

  • Liu DL, Lovett JV (1993b) Biologically active secondary metabolites of barley. II. Phytotoxicity of barley allelochemicals. J Chem Ecol 19:2231–2244

    Article  CAS  PubMed  Google Scholar 

  • Lodhi MAK, Bilal R, Malik KA (1987) Allelopathy in agroecosystems: wheat phytotoxicity and its possible role in crop rotation. J Chem Ecol 13:1881–1891

    Article  CAS  PubMed  Google Scholar 

  • Ma SY, Kim JS, Ryang HS (1999) Allelopathic effect of barley to red rice and barnyardgrass. Korean J Weed Sci 19:228–235

    Google Scholar 

  • Macías FA, Marín D, Oliveros-Bastidas A, Varela RM, Simonet AM, Carrera C, Molinillo JM (2003) Allelopathy as a new strategy for sustainable ecosystems development. Biol Sci Space 17(1):18–23

    Article  PubMed  Google Scholar 

  • Mason HE, Spaner D (2006) Competitive ability of wheat in conventional and organic management systems: a review of the literature. Can J Plant Sci 86:333–343

    Article  Google Scholar 

  • Miller DA (1983) Allelopathic effects of alfalfa. J Chem Ecol 9:1059–1072

    Article  CAS  PubMed  Google Scholar 

  • Nilsson MC (1994) Separation of allelopathy and resource competition by the boreal dwarf shrub Empetrum hermaphroditum Hagerup. Oecologia 98:1–7

    Article  Google Scholar 

  • Ninkovic V (2003) Volatile communication between barley plants affects biomass allocation. J Exp Bot 54(389):1931–1939

    Article  CAS  PubMed  Google Scholar 

  • Olofsdotter M, Navarez M, Rebulanan M, Streibig JC (1999) Weed-suppressing rice cultivars-does allelopathy play a role? Weed Res 39:441–454

    Article  Google Scholar 

  • Oueslati O, Ben-Hammouda M, Ghorbal MH, El Gazzeh M, Kremer RJ (2005) Barley autotoxicity as influenced by varietal and seasonal variation. J Agron Crop Sci 191:249–254

    Article  Google Scholar 

  • Oveisi M, Mashhadi HR, Baghestani MA, Alizadeh HM, Badri S (2008) Assessment of the allelopathic potential of 17 Iranian barley cultivars in different development stages and their variations over 60 years of selection. Weed Biol Manag 8:225–232

    Article  Google Scholar 

  • Overland L (1966) The role of allelopathic substances in the ‘smother crop’ barley. Am J Bot 53:423–432

    Article  CAS  Google Scholar 

  • Petersen J, Belz R, Walker F, Hurle K (2001) Weed suppression by release of isothiocyanates from turnip-rape mulch. Agron J 93:37–43

    Article  CAS  Google Scholar 

  • Putnam AR (1985) Allelopathic research in agriculture: past highlights and potential. In: Thompson AC (ed) The chemistry of allelopathy: biochemical interactions among plants. American Chemical Society, Washington, USA, pp 1–8

  • Qasem JR, Hill TA (1989) On difficulties with allelopathy methodology. Weed Res 29:345–347

    Article  Google Scholar 

  • Rice EL (1984) Allelopathy, 2nd edn. Academic Press, Orlando, USA

  • Ridenour WM, Callaway RM (2001) The relative importance of allelopathy in interference: the effects of an invasive weed on a native bunchgrass. Oecologia 126:444–450

    Article  Google Scholar 

  • Souissi T, Belhadjsalah H, Mhafdhi M, Latiri K (2000) Non chemical control of Bromus diandrus Roth. in wheat in Tunisia. In: Proceedings of the XI International Conference on Weed Biology. Association Française de Protection des Plantes, Dijon, France, pp 417–424

  • Souissi T, BelhadjSalah H, Latiri K (2001) Brome in cereal crops: infestations and management. L’Investisseur Agricole 42:29–32

    Google Scholar 

  • Souissi T, Labidi S, Ben Hadj Salah H (2004) Mise en évidence et origine de la résistance herbicide aux raygrass (Lolium rigidum Gaud.) dans les cultures de blé. Revue de L’INAT 19(1):149–161

  • Vasilakoglou I, Dhima K, Lithourgidis A, Eleftherohorinos I (2009) Allelopathic potential of 50 barley cultivars and the herbicidal effects of barley extract. Allelopath J 24(2):309–320

    Google Scholar 

  • Viard-Crétat F, Gallet C, Lefebvre M, Lavorel S (2009) A leachate a day keeps the seedlings away: mowing and the inhibitory effects of Festuca paniculata in subalpine grasslands. Ann Bot 103:1271–1278

    Article  PubMed Central  PubMed  Google Scholar 

  • Weidenhamer JD (1996) Distinguishing resource competition and chemical interference: overcoming the methodological impasse. Agron J 88:866–875

    Article  Google Scholar 

  • Wu H, Haig T, Prately J, Lemerle D, Lemerle D, An M (2000a) Distribution and exudation of allelochemicals in wheat Triticum aestivum. J Chem Ecol 26:2141–2154

    Article  CAS  Google Scholar 

  • Wu H, Prately J, Lemerle D, Haig T (2000b) Evaluation of seedling allelopathy in 453 wheat (Triticum aestivum) accessions against annual ryegrass (Lolium rigidum) by the equal-compartment-agar method. Aust J Agric Res 51:937–944

    Article  Google Scholar 

  • Zhang S, Liu J, Bao X, Niu K (2011) Seed-to-seed potential allelopathic effects between Ligularia virgaurea and native grass species of Tibetan alpine grasslands. Ecol Res 26:47–52

    Article  Google Scholar 

Download references

Acknowledgments

During this work, the first author was recipient of a PhD fellowship of the Erasmus Mundus Averroès Partnerships Action of the European Commission. We would like to thank François Rochet for her valuable help in statistical analysis. This work was funded by internal grants of Gembloux-Agro Bio Tech, University of Liège, Belgium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imen Bouhaouel.

Additional information

Handling Editor: S. Raghu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouhaouel, I., Gfeller, A., Fauconnier, ML. et al. Allelopathic and autotoxicity effects of barley (Hordeum vulgare L. ssp. vulgare) root exudates. BioControl 60, 425–436 (2015). https://doi.org/10.1007/s10526-014-9634-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-014-9634-3

Keywords

Navigation