Skip to main content
Log in

Toxic organic acids produced in biological soil disinfestation mainly caused the suppression of Fusarium oxysporum f. sp. cubense

  • Published:
BioControl Aims and scope Submit manuscript

Abstract

Biological soil disinfestation (BSD) is an effective and environmentally friendly way to suppress soil-borne pathogens. Although it is increasingly used in USA, the Netherlands and Japan, its precise mechanism has not been well quantified so far. Quantitative real-time PCR, denaturing gradient gel electrophoresis and high performance liquid chromatography were used for investigating the role of organic acids in the mechanisms of BSD. The results showed that BSD significantly reduced the population of Fusarium oxysporum in soil. Simultaneously, in BSD treatments, the soil pH significantly decreased and some organic acid producers, such as Clostridia sp., were observed. Four kinds of toxic organic acids to F. oxysporum were detected in soil solutions of BSD treatments. Acetic acid and butyric acid were the primary organic acids, followed by small amounts of isovaleric acid and propionic acid. The verification test directly demonstrated that the toxic organic acids with the maximal doses detected in BSD significantly suppressed F. oxysporum, Rhizoctonia solani and Ralstonia solanacearum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Blok WJ, Lamers JG, Termorshuizen AJ, Bollen GJ (2000) Control of soilborne plant pathogens by incorporating fresh organic amendments followed by tarping. Phytopathology 90:253–259

    Article  CAS  PubMed  Google Scholar 

  • Borrero C, Ordovas J, Trillas MI, Aviles M (2006) Tomato Fusarium wilt suppressiveness. The relationship between the organic plant growth media and their microbial communities as characterized by Biolog®. Soil Biol Biochem 38:1631–1637

    Article  CAS  Google Scholar 

  • Browning M, Wallace DB, Dawson C, Alm SR, Amador JA (2006) Potential of butyric acid for control of soil-borne fungal pathogens and nematodes affecting strawberries. Soil Biol Biochem 38:401–404

    Article  CAS  Google Scholar 

  • Butler DM, Rosskopf EN, Kokalis-Burelle N, Albano JP, Muramoto J, Shennan C (2012a) Exploring warm-season cover crops as carbon sources for anaerobic soil disinfestation (ASD). Plant Soil 355(1–2):149–165

    Article  CAS  Google Scholar 

  • Butler DM, Kokalis-Burelle N, Muramoto J, Shennan C, McCollum TG, Rosskopf EN (2012b) Impact of anaerobic soil disinfestation combined with soil solarization on plant-parasitic nematodes and introduced inoculum of soilborne plant pathogens in raised-bed vegetable production. Crop Prot 39:33–40

    Article  CAS  Google Scholar 

  • Chen L, Yang X, Raza W, Li J, Liu Y, Qiu M, Zhang F, Shen Q (2010) Trichoderma harzianum SQR-T037 rapidly degrades allelochemicals in rhizospheres of continuously cropped cucumbers. Appl Microbiol Biotechnol 89(5):1653–1663

    Article  PubMed  Google Scholar 

  • Cos-kuntuna A, Ozer N (2008) Biological control of onion basal rot disease using Trichoderma harzianum and induction of antifungal compounds in onion set following seed treatment. Crop Prot 27:330–336

    Article  CAS  Google Scholar 

  • Gamliel A, Austerweil M, Kritzman G (2000) Non-chemical approach to soilborne pest management-organic amendments. Crop Prot 19:847–853

    Article  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  CAS  PubMed  Google Scholar 

  • Goud J-KC, Termorshuizen AJ, Blok WJ, van Bruggen AHC (2004) Long-term effect of biological soil disinfestation on Verticillium Wilt. Plant Dis 88(7):688–694

    Article  Google Scholar 

  • Huang X, Chen L, Ran W, Shen Q, Yang X (2011a) Trichoderma harzianum strain SQR-T37 and its bio-organic fertilizer could control Rhizoctonia solani damping-off disease in cucumber seedlings mainly by the mycoparasitism. Appl Microbiol Biotechnol 91(3):741–755

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Zhang N, Yong X, Yang X, Shen Q (2011b) Biocontrol of Rhizoctonia solani damping-off disease in cucumber with Bacillus pumilus SQR-N43. Microbiol Res 167:135–143

    Article  PubMed  Google Scholar 

  • Katase M, Kubo C, Ushio S, Ootsuka E, Takeuchi T, Mizukubo T (2009) Nematicidal activity of volatile fatty acids generated from wheat bran in reductive soil disinfestation. Nematol Res 39:53–62

    Article  Google Scholar 

  • Levine AS, Fellers CR (1940) Action of acetic acid on food spoilage microörganisms. J Bacteriol 39(5):499–515

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li WM, Qian CM, Mo YW, Hu YL, Xie JH (2011) Tolerance of banana for fusarium wilt is associated with early H2O2 accumulation in the roots. Afr J Biotechnol 10(55):11378–11387

    CAS  Google Scholar 

  • Lievens B, Brouwer M, Vanachter ACRC, Levesque CA, Cammue BPA, Thomma BPHJ (2005) Quantitative assessment of phytopathogenic fungi in various substrates using a DNA macroarray. Environ Microbiol 7(11):1698–1710

    Article  CAS  PubMed  Google Scholar 

  • Ling N, Raza W, Ma J, Huang Q, Shen Q (2011a) Identification and role of organic acids in watermelon root exudates for recruiting Paenibacillus polymyxa SQR-21 in the rhizosphere. Eur J Soil Biol 47:374–379

    Article  CAS  Google Scholar 

  • Ling N, Huang Q, Guo S, Shen Q (2011b) Paenibacillus polymyxa SQR-21 systemically affects root exudates of watermelon to decrease the conidial germination of Fusarium oxysporum f.sp. niveum. Plant Soil 341:485–493

    Article  CAS  Google Scholar 

  • López-Mondéjar R, Antón A, Raidl S, Ros M, Pascual JA (2010) Quantification of the biocontrol agent Trichoderma harzianum with real-time TaqMan PCR and its potential extrapolation to the hyphal biomass. Bioresour Technol 101(8):2888–2891

    Article  PubMed  Google Scholar 

  • Messiha NAS, Diepeningen AD, Wenneker M, Beuningen AR, Janse JD, Coenen TGC, Termorshuizen AJ, Bruggen AHC, Blok WJ (2007) Biological Soil Disinfestation (BSD), a new control method for potato brown rot, caused by Ralstonia solanacearum race 3 biovar 2. Eur J Plant Pathol 117(4):403–415

    Article  Google Scholar 

  • Minton NP, Clarke DJ (1989) Biotechnology handbook vol. 3, Clostridia. Plenum Press, New York, USA

  • Mizumoto S, Hirai M, Shoda M (2007) Enhanced iturin A production by Bacillus subtilis and its effect on suppression of the plant pathogen Rhizoctonia solani. Appl Microbiol Biotechnol 75(6):1267–1274

    Article  CAS  PubMed  Google Scholar 

  • Momma N (2008) Biological soil disinfestation (BSD) of soilborne pathogens and its possible mechanisms. Jpn Agric Res Q 42(1):7–12

    Article  CAS  Google Scholar 

  • Momma N, Yamamoto K, Simandi P, Shishido M (2006) Role of organic acids in the mechanisms of biological soil disinfestation (BSD). J Gen Plant Pathol 72:247–252

    Article  CAS  Google Scholar 

  • Momma N, Momma M, Kobara Y (2010) Biological soil disinfestation using ethanol: effect on Fusarium oxysporum f. sp. lycopersici and soil microorganisms. J Gen Plant Pathol 76(5):336–344

    Article  CAS  Google Scholar 

  • Momma N, Kobara Y, Momma M (2011) Fe2+ and Mn2+, potential agents to induce suppression of Fusarium oxysporum for biological soil disinfestation. J Gen Plant Pathol 77(6):331–335

    Article  CAS  Google Scholar 

  • Momma N, Kobara Y, Uematsu S, Kita N, Shinmura A (2013) Development of biological soil disinfestations in Japan. Appl Microbiol Biotechnol 97(9):3801–3809

    Article  CAS  PubMed  Google Scholar 

  • Mowlick S, Inoue T, Takehara T, Kaku N, Ueki K, Ueki A (2013) Changes and recovery of soil bacterial communities influenced by biological soil disinfestation as compared with chloropicrin-treatment. AMB Express 3:46–58

    Article  PubMed Central  PubMed  Google Scholar 

  • Nübel U, Engelen B, Felske A, Snaidr J, Weishuber A, Amman RI, Ludwig W, Backhaus W (1996) Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J Bacteriol 178:5636–5643

    PubMed Central  PubMed  Google Scholar 

  • O’Donnell K, Kistler HC, Cigelnik E, Ploetz RC (1998) Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. PNAS 95:2044–2049

    Article  PubMed Central  PubMed  Google Scholar 

  • Oka Y (2010) Mechanisms of nematode suppression by organic soil amendments—A review. Appl Soil Ecol 44(2):101–115

    Article  Google Scholar 

  • PiedraBuena A, García-Álvarez A, Díez-Rojo MÁ, Bello A (2006) Use of crop residues for the control of Meloidogyne incognita under laboratory conditions. Pest Manag Sci 62(10):919–926

    Article  CAS  PubMed  Google Scholar 

  • Runia WT, Molendijk LPG (2010) Physical methods for soil disinfestation in intensive agriculture: old methods and new approaches. Acta Hortic 883:249–258

    Google Scholar 

  • Shinmura A (2000) Causal agent and control of root rot of welsh onion. PSJ Soilborne Dis Workshop Rep 20:133–143

    Google Scholar 

  • Shinmura A (2004) Principle and effect of soil sterilization method by reducing redox potential of soil. PSJ Soilborne Dis Workshop Rep 22:2–12

    Google Scholar 

  • Tenuta M, Lazarovits G (2002) Ammonia and nitrous acid from nitrogenous amendments kill the microsclerotia of Verticillium dahliae. Phytopathology 92:255–264

    Article  CAS  PubMed  Google Scholar 

  • van Veen JA, van Overbeek LS, van Elsas JD (1997) Fate and activity of microorganisms introduced into soil. Microbiol Mol Biol Rev 61:121–135

    PubMed Central  PubMed  Google Scholar 

  • Wei Z, Huang J, Tan S, Mei X, Shen Q, Xu Y (2013) The congeneric strain Ralstonia pickettii QL-A6 of Ralstonia solanacearum as an effective biocontrol agent for bacterial wilt of tomato. Biol Control 65(2):278–285

    Article  Google Scholar 

  • Zhang N, Wu K, He X, Li SQ, Zhang ZH, Shen B, Yang XM, Zhang RF, Huang QW, Shen QR (2011) A new bioorganic fertilizer can effectively control banana wilt by strong colonization with Bacillus subtilis N11. Plant Soil 344:87–97

    Article  CAS  Google Scholar 

  • Zoetendal EG, Akkermans AD, de Vos WM (1998) Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl Environ Microbiol 64:3854–3859

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the National Natural Science Foundation of China (Grant Nos. 41301335, 41222005), China Postdoctoral Science Foundation (2014M551622), Specialized Research Fund for the Doctoral Program of Higher Education of China (20133207120018) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zucong Cai.

Additional information

Handling Editor: Monica Hofte.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Wen, T., Zhang, J. et al. Toxic organic acids produced in biological soil disinfestation mainly caused the suppression of Fusarium oxysporum f. sp. cubense . BioControl 60, 113–124 (2015). https://doi.org/10.1007/s10526-014-9623-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-014-9623-6

Keywords

Navigation