Skip to main content

Advertisement

Log in

Potential effects of climate change on biological control systems: case studies from New Zealand

  • Review
  • Published:
BioControl Aims and scope Submit manuscript

Abstract

Biological control systems are integral to New Zealand’s success as a nation reliant on exporting quality agricultural, forestry and horticultural products. The likely impacts of climate change projections to 2090 on one weed and four invertebrate management systems in differing production sectors were investigated, and it was concluded that most natural enemies will track the changing distributions of their hosts. The key climate change challenges identified were: disparities in natural enemy capability to change distribution, lack of frosts leading to emergence of new pests and additional pest generations, non-target impacts from range and temperature changes, increased disruptions caused by extreme weather events, disruption of host-natural enemy synchrony, and insufficient genetic diversity to allow evolutionary adaptation. Five classical biological control systems based on the introduced species Longitarsus jacobaeae, Cotesia kazak, Aphelinus mali, Microctonus aethiopoides and Microctonus hyperodae are discussed in more detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aeschlimann J-P, Vitou J (1988) Comparing infestations by Sitona discoideus Gyllenhal (Coleoptera: Curculionidae) on Mediterranean and Australian Medicago spp. accessions (Leguminosae) in Southern France. J Aust Entomol Soc 27:275–278

    Article  Google Scholar 

  • Allsopp PGG, Daglish J, Taylor MFJ, Gregg PC (1991) Measuring development of Heliothis species. In: Zalucki MP (ed) Heliothis: research methods and prospects. Springer, New York, USA, pp 90–101

  • Asante SK, Danthanarayana W (1992) Development of Aphelinus mali an endoparasitoid of woolly apple aphid, Eriosoma lanigerum at different temperatures. Entomol Exp Appl 65:31–37

    Article  Google Scholar 

  • Asante SK, Danthanarayana W, Heatwole H (1991) Bionomics and population growth statistics of apterous virginoparae of woolly apple aphid, Eriosoma lanigerum, at constant temperatures. Entomol Exp Appl 60:261–270

    Article  Google Scholar 

  • Barratt BIP, Evans AA, Ferguson CM, Barker GM, McNeill MR, Phillips CB (1997) Laboratory nontarget host range of the introduced parasitoids Microtonus aethiopoides and M. hyperodae (Hymenoptera: Braconidae) compared with field parasitism in New Zealand. Environ Entomol 26:694–702

    Google Scholar 

  • Barratt BIP, Howarth FG, Withers TM, Kean J, Ridley GS (2010) Progress in risk assessment for classical biological control. Biol Control 52:245–254

    Article  Google Scholar 

  • Barton J (2005) Infidelity ends hopes of a passion-filled relationship. In: What’s new in biological control of weeds? 34: 1–2. http://www.landcareresearch.co.nz/__data/assets/pdf_file/0018/20646/wtsnew34.pdf. Accessed 13 Aug 2012

  • Barton J, Fowler SV, Gianotti AF, Winks CJ, Beurs Md, Arnold GC, Forrester G (2007) Successful biological control of mist flower (Ageratina riparia) in New Zealand: agent establishment, impact and benefits to the native flora. Biol Control 40:370–385

    Article  Google Scholar 

  • Berg MP, Kiers ET, Driessen G, van der Heijden MI, Kooi BW, Kuenen F, Liefting M, Verhoef HA, Ellers J (2010) Adapt or disperse: understanding species persistence in a changing world. Glob Change Biol 16:587–598

    Article  Google Scholar 

  • Cameron PJ, Walker GP, Herman TJB, Wallace AR (2001) Development of economic thresholds and monitoring systems for Helicoverpa armigera (Lepidoptera: Noctuidae) in tomatoes. J Econ Entomol 94:1104–1112

    Article  PubMed  CAS  Google Scholar 

  • Cameron PJ, Walker GP, Herman TJB, Wallace AR (2006) Incidence of the introduced parasitoids Cotesia kazak and Microplitis croceipes (Hymenoptera: Braconidae) from Helicoverpa armigera (Lepidoptera: Noctuidae) in tomatoes, sweet corn, and lucerne in New Zealand. Biol Control 39:375–384

    Article  Google Scholar 

  • Carl KP (1978) Heliothis armigera: parasite survey and introduction of Apanteles kazak to New Zealand. Commonwealth Institute of Biological Control, Delemont, Switzerland

    Google Scholar 

  • Cock MJW, van Lenteren JC, Brodeur J, Barratt BIP, Bigler F, Bolckmans K, Cônsoli FL, Haas F, Mason PG, Parra JRP (2010) Do new access and benefit sharing procedures under the convention on biological diversity threaten the future of biological control? BioControl 55:199–218

    Article  Google Scholar 

  • Cock MJW, Biesmeijer JC, Cannon RJC, Gerard PJ, Gillespie D, Jiménez JJ, Lavelle PM, Raina SK (2011) Climate change and invertebrate genetic resources for food and agriculture: state of knowledge, risks and opportunities. Background study paper no. 54. Commission on Genetic Resources for Food and Agriculture. http://www.fao.org/docrep/meeting/022/mb390e.pdf. Accessed 15 May 2011

  • Cullen JM, Hopkins DC (1982) Rearing, release and recovery of Microctonus aethiopoides Loan (Hymenoptera: Braconidae) imported for the control of Sitona discoideus Gyllenhal (Coleoptera: Curculionidae) in south eastern Australia. J Aust Entomol Soc 21:279–284

    Article  Google Scholar 

  • DeBach P, Rosen D (1991) Biological control by natural enemies, 2nd ed. Cambridge University Press, Cambridge, UK

  • Dymock JJ, Gibb AR, Suckling DM (2009) Monitoring and predicting populations of the tropical grass webworm (Herpetogramma licarsisalis) a pest of kikuyu pasture in Northland. Proc NZ Grassl Assoc 71:25–30

    Google Scholar 

  • East R, Willoughby BE (1980) The effects of pasture defoliation in summer on grass grub (Costelytra zealandica) populations. NZ J Agric Res 23:547–562

    Article  Google Scholar 

  • Esson MJ (1975) Notes on the biology and distribution of three recently discovered exotic weevil pests in Hawkes Bay. Proc 28th NZ Weed Pest Cont Conf 28: 208–212

  • Ferguson CM, Moeed A, Barratt BIP, Hill RL, Kean JM (2007) BCANZ—biological control agents introduced to New Zealand. http://www.b3nz.org/bcanz Accessed 15 May 2012)

  • Fuhrer J (2003) Agroecosystem responses to combinations of elevated CO2, ozone, and global climate change. Agric Ecosyst Environ 97:1–20

    Article  CAS  Google Scholar 

  • Gerard PJ (2004) Synchronisation of the parasitoid Centrodora scolypopae with its host Scolypopa australis. NZ Plant Prot 57:10–12

    Google Scholar 

  • Gerard PJ, Wilson DJ, Eden TM (2010) Clover root weevil biocontrol distribution in the North Island—release tactics and outcomes. Proc NZ Grassl Assoc 72:85–89

    Google Scholar 

  • Gerard PJ, Addison PJ, Hedley P, Bell NL, Vink CJ (2011) Outbreak of armyworms in eastern Bay of Plenty. NZ Plant Prot 64:285

    Google Scholar 

  • Godfray HCJ, Hassell MP, Holt RD (1994) The population dynamic consequences of phenological asynchrony between parasitoids and their hosts. J Anim Ecol 63:1–10

    Article  Google Scholar 

  • Goldson SL (2007) Climate change in biological control. In: Newton PCD, Carran RA, Edwards GR, Niklaus PA (eds) Agroecosystems in a changing climate. CRC Press, Boca Raton, USA, pp 329–332

  • Goldson SL, Proffitt JR, McNeill MR (1990) Seasonal biology and ecology in New Zealand of Microctonus aethiopoides (Hymenoptera: Braconidae), a parasitoid of Sitona spp. (Coleoptera: Curculionidae), with special emphasis on atypical behaviour. J Appl Ecol 27:703–722

    Article  Google Scholar 

  • Gourlay AH, Fowler SV, Rattray G (2005) Abundance of ragwort flea beetle (Longitarsus jacobaeae) at five sites on the West Coast, South Island, New Zealand. Landcare research contract report. http://wwwold.landcareresearch.co.nz/publications/researchpubs/0405-131Gourlay.pdf. Accessed 13 Aug 2012

  • Gourlay AH, Fowler SV, Rattray G (2008) Is ragwort flea beetle (Longitarsus jacobeae) performance reduced by high rainfall on the West Coast, South Island, New Zealand? In: Julien MH, Sforza R, Bon MC, Evans HC, Hatcher PE, Hinz HL, Rector BG (eds) Proceedings of the XII international symposium on biological control of weeds. CAB International, Wallingford, UK, pp 545–551

  • Hagen KS, van den Bosch R (1968) Impact of pathogens, parasites and predators on aphids. Annu Rev Entomol 13:325–384

    Article  Google Scholar 

  • Hance T, van Baaren J, Vernon P, Boivin G (2007) Impact of extreme temperatures on parasitoids in a climate change perspective. Annu Rev Entomol 52:107–126

    Article  PubMed  CAS  Google Scholar 

  • Hopkins DC (1989) Widespread establishment of the sitona weevil parasite Microctonus aethiopoides, and its effectiveness as a control agent in South Australia. In: Stahle PP (ed) Proceedings of the 5th Australasian conference of grassland invertebrate ecology. D&D Printing, Melbourne, Australia, pp 49–53

  • Jallow MFA, Matsumura M (2001) Influence of temperature on the rate of development of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Appl Entomol Zool 36:427–430

    Article  Google Scholar 

  • Jonsson M, Wratten SD, Landis DA, Tompkins JML, Cullen R (2010) Habitat manipulation to mitigate the impacts of invasive arthropod pests. Biol Invasions 12:2933–2945

    Article  Google Scholar 

  • Kean JM, Barlow ND (2000) Long-term assessment of the biological control of Sitona discoideus by Microctonus aethiopoides and test of a model. Biocontrol Sci Technol 10:215–221

    Article  Google Scholar 

  • Kelly D, Wood R (1991) Why nodding thistle receptacle weevil destroys so little nodding thistle seed in Canterbury. In: Proceedings of the 44th New Zealand weed and pest control conference. pp 280–283

  • Lynch M, Lande R (1993) Evolution and extinction in response to environmental change. In: Kareiva P, Kingsolver J, Huey R (eds) Biotic interactions and global change. Sinauer Assocs Inc., Sunderland, USA, pp 234–250

    Google Scholar 

  • Marshall GAK (1937) New Curculionidae (Col.) in New Zealand. Trans R Soc NZ 67:316–340

    Google Scholar 

  • McNeill MR, Goldson SL, Proffitt JR, Phillips CB, Addison PJ (2002) A description of the commercial rearing and distribution of Microctonus hyperodae (Hymenoptera: Braconidae) for biological control of Listronotus bonariensis (Kuschel) (Coleoptera: Curculionidae). Biol Control 24:167–175

    Article  Google Scholar 

  • Mills NJ (2006) Accounting for differential success in the biological control of homopteran and lepidopteran pests. NZ J Ecol 30:61–72

    Google Scholar 

  • Mironidis GK, Savopoulou-Soultani M (2008) Development, survivorship, and reproduction of Helicoverpa armigera (Lepidoptera: Noctuidae) under constant and alternating temperatures. Environ Entomol 37:16–28

    Article  PubMed  CAS  Google Scholar 

  • Morris M (1989) Evidence for diapause in indigenous New Zealand insects: a review. NZ J Zool 16:431–434

    Article  Google Scholar 

  • Mullan B, Wratt D, Dean S, Hollis M (2008).Climate change effects and impacts assessment: a guidance manual for local government in New Zealand. http://www.mfe.govt.nz/publications/climate/climate-change-effect-impacts-assessments-may08/index.html. Accessed 15 Sept 2011

  • O’Callaghan M, Jackson TA, Noonan MJ (1989) Ecology of Serratia entomophila in soil. In: Stahle PP (ed) Proceedings of the 5th Australasian conference on grassland invertebrate ecology. D.D. Printing, Melbourne, Australia, pp 69–75

    Google Scholar 

  • Parry ML (1989) The potential impact on agriculture of the ‘greenhouse effect’ In: Bennett RM (ed) The ‘greenhouse effect’ and UK Agriculture. Centre for Agricultural Strategy, Reading, UK, pp. 24–46

  • Phillips CB, Townsend H, Vink CJ (2006) Blown in the wind or border slippage? What natural dispersal of exotic species to New Zealand has to do with biosecurity. Biosecurity 69:14–15

    Google Scholar 

  • Phillips CB, Baird DB, Iline II, McNeill MR, Proffitt JR, Goldson SL, Kean JM (2008) East meets west: adaptive evolution of an insect introduced for biological control. J Appl Ecol 45:948–956

    Article  Google Scholar 

  • Potter KJB, Ireson JE, Allen G (2007) Survival of larvae of the ragwort flea beetle, Longitarsus flavicornis (Coleoptera: Chrysomelidae), in water-logged soil. Biocontrol Sci Technol 17:756–770

    Google Scholar 

  • Root TL, Price JT, Hall KR, Schneider SH, Rosenzweigk C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60

    Article  PubMed  CAS  Google Scholar 

  • Shaw PW, Walker JTS (1996) Biological control of woolly apple aphid by Aphelinus mali in an integrated fruit production programme in Nelson. In: Proceedings of 49th New Zealand weed and pest control conference. pp 59–63

  • Shaw PW, Wallis DR (2009) Early-season use of insecticides for management of woolly apple aphid (Eriosoma lanigerum) in Nelson apple orchards. NZ Plant Prot 62:291–295

    CAS  Google Scholar 

  • Stewart CA, Julien MH, Worner SP (1995) The potential geographical distribution of alligator weed (Alternanthera philoxeroides) and a biological control agent, Agasicles hygrophila, in New Zealand. In: Proceedings of 48th New Zealand weed and pest control conference. pp 270–275

  • Stireman JO, III, Dyer LA, Janzen DH, Singer MS, Lill JT, Marquis RJ, Ricklefs RE, Gentry GL, Hallwachs W, Coley PD, Barone JA, Greeney HF, Connahs H, Barbosa P, Morais HC, Diniz IR (2005) Climatic unpredictability and parasitism of caterpillars: implications of global warming. Proc Natl Acad Sci 2:17384–17387

  • Sutherst RW, Maywald GF, Kriticos DJ (2007) CLIMEX Version 3: user’s guide. Hearne Scientific Software Pty Ltd. http://www.hearne.com.au. Accessed 29 Sept 2011

  • Syrett P (1989) Senecio jacobaea L, ragwort (Asteraceae). In: Cameron PJ, Hill RL, Bain B, and Thomas WP (eds) Review of biological control of invertebrate pests and weeds in New Zealand 1874 to 1987. CAB International, Oxon, UK, pp. 361–366

  • Tauber MJ, Tauber CA (1976) Insect seasonality: diapause Maintenance, termination, and postdiapause development. Annu Rev Entomol 21:81–107

    Article  Google Scholar 

  • Thomson LJ, Macfadyen S, Hoffmann AA (2010) Predicting the effects of climate change on natural enemies of agricultural pests. Biol Control 52:296–306

    Article  Google Scholar 

  • Tillman GP, Laster ML, Powell JE (1993) Development of the endoparasitoids Microplitis croceipes, Microplitis demolitor, and Cotesia kazak (Hymenoptera: Braconidae) on Helicoverpa zea and H. armigera (Lepidoptera: Noctuidae). J Econ Entomol 86:360–362

  • Tillman PG, Powell JE (1991) Developmental time in relation to temperature for Microplitis croceipes, M. demolitor, Cotesia kazak (Hymenoptera: Braconidae), and Hyposoter didymator (Hymenoptera: Ichneumonidae), endoparasitoids of the tobacco budworm (Lepidoptera: Noctuidae). Environ Entomol 20:61–64

  • Trimble RM, Blommers LHM, Helsen HHM (1990) Diapause termination and thermal requirements for postdiapause development in Aphelinus mali at constant and fluctuating temperatures. Entomol Exp Appl 56:61–69

    Article  Google Scholar 

  • Trujillo EE (1985) Biological control of Hamakua pa-makani with Cercosporella sp. in Hawaii. In: Delfosse ES (ed) Proceedings of VI international symposium on biological control of weeds, 19–25 August 1984, Vancouver, Canada. Agriculture, Ottawa, Canada, pp 661–671

    Google Scholar 

  • Walker GP, Cameron PJ (1989) Status of introduced larval parasitoids of tomato fruitworm. In: Proceedings of the 42nd New Zealand weed and pest control conference. pp 229–232

  • Walker GP, Cameron PJ (1990) Pheromone trapping and field scouting for tomato fruitworm in tomatoes and sweet corn. In: Proceedings of the 42nd New Zealand weed and pest control conference. pp 17–20

  • Walker GP, Herman TJB, Kale AJ, Wallace AR (2010) An adjustable action threshold using larval parasitism of Helicoverpa armigera (Lepidoptera: Noctuidae) in IPM for processing tomatoes. Biol Control 52:30–36

    Article  Google Scholar 

  • Wardle DA (1987) The ecology of ragwort (Senecio jacobaea L.)—a review. NZ J Ecol 10:67–76

    Google Scholar 

Download references

Acknowledgments

The project was funded by MAF Policy (Project 0910-11689) and the paper by the Ministry of Science and Innovation (LINX0804 Ecosystems Bioprotection). The authors thank Barbara Barratt, Jenny Dymock, Linda Faulkner, Travis Glare, Garry Hill, Lynley Hayes Trevor Jackson, Geoff Ridley, Cor Vink, Sue Worner, and Sue Zydenbos for contributing their expert insights, opinions and support at the climate change/biocontrol workshop at Lincoln.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. J. Gerard.

Additional information

Handling Editor: Dirk Babendreier

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerard, P.J., Barringer, J.R.F., Charles, J.G. et al. Potential effects of climate change on biological control systems: case studies from New Zealand. BioControl 58, 149–162 (2013). https://doi.org/10.1007/s10526-012-9480-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-012-9480-0

Keywords

Navigation