Skip to main content
Log in

Interspecific extrinsic and intrinsic competitive interactions in egg parasitoids

  • Review
  • Published:
BioControl Aims and scope Submit manuscript

Abstract

Interspecific competitive interactions can occur either between adult parasitoids searching/exploiting hosts (extrinsic competition) or between parasitoid larvae developing within the same host (intrinsic competition). Understanding how interspecific competition between parasitoids can affect pest suppression is important for improving biological pest control. The purpose of this work was to review both extrinsic and intrinsic competition between egg parasitoid species. These are organisms that are often candidates for biological control programs due to their ability to kill the pest before the crop feeding stage. We first reviewed the literature about interspecific competitive abilities of adult parasitoids in terms of comparative host location strategies highlighting which ecological and behavioral factors are likely to shape extrinsic competition. Then we focused on the interspecific competitive interactions between immatures developing within the same host taking into account which factors play a key role in the outcome of intrinsic competition. Finally we conclude stressing on the need to elucidate the overall competitive interaction that parasitoid species may experience in the field in order to enhance biological control success.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agboka K, Schulthess F, Chabi-Olaye A, Labo I, Gounou S, Smith H (2002) Self-, intra-, and inter-specific host discrimination in Telenomus busseolae Gahan and T. Isis Polaszek (Hymenoptera: Scelionidae), sympatric egg parasitoids of the African cereal stem borer Sesamia calamistis Hampson (Lepidoptera: Noctuidae). J Insect Behav 15:1–12

    Article  Google Scholar 

  • Alim MA, Taek Lim U (2011) Interspecific larval competition between two egg parasitoids in refrigerated host eggs of Riptortus pedestris (Hemiptera: Alydidae). Biocontrol Sci Technol 21(4):395–407

    Article  Google Scholar 

  • Amarasekare P (2000a) Spatial dynamics in a host-multiparasitoid community. J Anim Ecol 69:201–213

    Article  Google Scholar 

  • Amarasekare P (2000b) Coexistence of competing parasitoids on a patchily distributed host: local vs. spatial mechanisms. Ecology 81:1286–1296

    Article  Google Scholar 

  • Andersson J, Borg-Karlson AK, Wiklund C (2003) Antiaphrodisiacs in pierid butterflies: a theme with variation! J Chem Ecol 29:1489–1499

    Article  PubMed  CAS  Google Scholar 

  • Austin AD, Johnson NF, Dowton M (2005) Systematics, evolution, and biology of scelionid and platygastrid wasps. Annu Rev Entomol 50:553–582

    Article  PubMed  CAS  Google Scholar 

  • Battisti A (1989) Field studies on the behaviour of two egg parasitoids of the pine processionary moth Thaumetopoea pityocampa. Entomophaga 34:29–38

    Article  Google Scholar 

  • Bogran CE, Heinz KM, Ciomperlik MA (2002) Interspecific competition among insect parasitoids: field experiments with whiteflies as hosts in cotton. Ecology 83:653–668

    Google Scholar 

  • Boivin G, Brodeur J (2006) Intra- and inter-specific interactions among parasitoids: mechanisms, outcomes and biological control. In: Brodeur J, Boivin G (eds) Trophic and guild interactions in biological control. Springer, Dordrecht, The Netherlands, pp 123–144

    Chapter  Google Scholar 

  • Boivin G, van Baaren J (2000) The role of larval aggression and mobility in the transition between solitary and gregarious development in parasitoid wasps. Ecol Lett 3:469–474

    Article  Google Scholar 

  • Briggs CJ (1993) Competition among parasitoid species on a stage-structured host and its effect on host suppression. Am Nat 141:372–397

    Article  Google Scholar 

  • Bruce AY, Schulthess F, Mueke J, Calatayud PA (2009) Olfactory attraction of egg parasitoids to virgin females of noctuid stemborers. BioControl 54:763–772

    Article  Google Scholar 

  • Bruni R, Sant′Ana J, Aldrich JR, Bin F (2000) Influence of host pheromone on egg parasitism by scelionid wasps: comparison of phoretic and nonphoretic parasitoids. J Insect Behav 13:165–173

    Article  Google Scholar 

  • Cabello Garcia T, Vargas Piqueras P (1985) Olfactometer studies of the influence of the plant and of the insect host in the searching activity of Trichogramma cordubensis Vargas, Cabello and T. sp. near buesi (Hym.: Trichogrammatidae). Bol San Veg Plagas 11:237–241

    Google Scholar 

  • Chow FJ, Mackauer M (1984) Inter- and intra-specific larval competition in Aphidious smithi and Praon pequodorum (Hymenoptera: Aphididae). Can Entomol 116:1097–1107

    Article  Google Scholar 

  • Colazza S, Salerno G, Wajnberg E (1999) Volatile and contact chemicals released by Nezara viridula (Heteroptera: Pentatomidae) have a kairomonal effect on the egg parasitoid Trissolcus basalis (Hymenoptera: Scelionidae). Biol Control 16:310–317

    Article  Google Scholar 

  • Colazza S, Fucarino A, Peri E, Salerno G, Conti E, Bin F (2004) Insect oviposition induces volatiles emission in herbaceous plant that attracts egg parasitoids. J Exp Biol 207:47–53

    Article  PubMed  Google Scholar 

  • Colazza S, Peri E, Salerno G, Conti E (2010) Host searching by egg parasitoids: exploitation of host chemical cues. In: Parra JRP, Consoli FL, Zucchi RA (eds) Egg parasitoids in agroecosystems with emphasis on Trichogramma. Springer, Dordrecht, The Netherlands, pp 97–147

    Google Scholar 

  • Conde JE, Rabinovich JE (1979) Larval competition between Telenomus costalimai (Hymenoptera: Scelionidae) and Ooencyrtus trinidadensis venatorius (Hymenoptera: Encyrtidae) after simultaneous oviposition in Rhodnius prolixus eggs (Hemiptera: Reduviidae). J Med Entomol 16:428–431

    PubMed  CAS  Google Scholar 

  • Conti E, Bin F (2000) Parasitoids of concealed noctuid eggs and their potential in biological control of gramineae stemborers. Redia 83:87–104

    Google Scholar 

  • Conti E, Salerno G, Bayram A, Bin F (2003) Strategies involved in host location of Telenomus busseolae and Trichogramma turkestanica, egg parasitoids of Sesamia nonagrioides. XII International Entomophagous Workshop, Tucson. J Insect Sci 3(33):6

    Google Scholar 

  • Correa-Ferreira SB, Moscardi F (1995) Seasonal occurrence and host spectrum of egg parasitoids associated with soybean stink bugs. Biol Control 5:196–202

    Article  Google Scholar 

  • Cusumano A, Peri E, Vinson SB, Colazza S (2011) Intraguild interactions between two egg parasitoids exploring host patches. BioControl 56:173–184

    Article  Google Scholar 

  • Cusumano A, Peri E, Vinson SB, Colazza S (2012) The ovipositing female of Ooencyrtus telenomicida relies on physiological mechanisms to mediate intrinsic competition with Trissolcus basalis. Entomol Exp Appl. doi:10.1111/j.1570-7458.2012.01236.x

    Google Scholar 

  • De Moraes CM, Cortesero AM, Stapel JO, Lewis WJ (1999) Intrinsic and extrinsic competition between two larval parasitoids of Heliothis virescens. Ecol Entomol 24:402–410

    Article  Google Scholar 

  • DeBach P (1966) The competitive displacement and coexistence principles. Annu Rev Entomol 11:183–212

    Article  Google Scholar 

  • Denoth M, Frid L, Myers JH (2002) Multiple agents in biological control: improving the odds? Biol Control 24:20–30

    Article  Google Scholar 

  • Eichhorn O, Pschorn-Walcher H (1976) Studies on the biology and ecology of the egg-parasites (Hym: Chalcidoidea) of the pine sawfly Diprion pini (L.) (Hym: Diprionidae) in Central Europe. Z Angew Entomol 80:355–381

    Article  Google Scholar 

  • Fatouros NE, Bukovinszkine‘Kiss G, Kalkers LA, Soler Gamborena R, Dicke M, Hilker M (2005a) Oviposition induced plant cues: do they arrest Trichogramma wasps during host location? Entomol Exp Appl 115:207–215

    Article  Google Scholar 

  • Fatouros NE, Huigens ME, van Loon JJA, Dicke M, Hilker M (2005b) Chemical communication: butterfly antiaphrodisiac lures parasitic wasps. Nature 433:704

    Article  PubMed  CAS  Google Scholar 

  • Fatouros NE, Bukovinszkine‘kiss G, Dicke M, Hilker M (2007) The response specificity of Trichogramma egg parasitoids towards infochemicals during host location. J Insect Behav 20:53–65

    Article  Google Scholar 

  • Fatouros NE, Broekgaarden C, Bukovinszkine‘Kiss G, van Loon JJA, Mumm R, Huigens ME, Dicke M, Hilker M (2008a) Male-derived butterfly anti-aphrodisiac mediates induced indirect plant defense. Proc Natl Acad Sci USA 105:10033–10038

    Article  PubMed  CAS  Google Scholar 

  • Fatouros NE, Dicke M, Mumm R, Meiners T, Hilker M (2008b) Foraging behavior of egg parasitoids exploiting chemical information. Behav Ecol 19:677–689

    Article  Google Scholar 

  • Fatouros NE, Pashalidou FG, Aponte Cordero WV, van Loon JJA, Mumm R, Dicke M, Hilker M, Huigens ME (2009) Anti-aphrodisiac compounds of male butterflies increase the risk of egg parasitoid attack by inducing plant synomone production. J Chem Ecol 35:1373–1381

    Article  PubMed  CAS  Google Scholar 

  • Feijen HR, Schulten GGM (1981) Egg parasitoids (Hymenoptera: Trichogrammatidae) of Diopsis macrophthalma (Diptera: Diopsidae) in Malawi. Neth J Zool 31:381–417

    Article  Google Scholar 

  • Fiaboe MK, Chabi-Olaye A, Gounou S, Smith H, Borgemeister C, Schultheiss F (2003) Sesamia calamistis calling behavior and its role in host finding of egg parasitoids Telenomus busseolae, Telenomus isis, and Lathromeris ovicida. J Chem Ecol 29:921–929

    Article  PubMed  CAS  Google Scholar 

  • Fisher RC (1961) A study in insect multiparasitism. II. The mechanism and control of competition for possession of the host. J Exp Biol 38:605–628

    Google Scholar 

  • Follett PA, Duan J, Messing RH, Jones VP (2000) Parasitoid drift after biological control introduction: re-examining Pandora’s box. Am Entomol 46:82–94

    Google Scholar 

  • Godfray HCJ (1994) Parasitoids: behavioral and evolutionary ecology. Princeton University Press, Princeton, USA

    Google Scholar 

  • Guo MF (1985) Discrimination of Trichogramma japonicum and other species of Trichogramma for hosts and competition among them (in Chinese). Nat Enemies Insects 7:192–200

    Google Scholar 

  • Hagvar EB (1989) Interspecific competition in parasitoids, with implications for biological control. Acta Entomol Bohemoslov 86:321–335

    Google Scholar 

  • Harvey PH, Partridge L (1987) Murderous mandibles and black holes in Hymenopteran wasps. Nature 326:128–129

    Article  Google Scholar 

  • Harvey JA, Gols R, Strand MR (2009) Intrinsic competition and its effects on the survival and development of three species of endoparasitoid wasps. Entomol Exp Appl 130:238–248

    Article  PubMed  Google Scholar 

  • Hawkins BA, Mills NJ, Jervis MA, Price PW (1999) Is the biological control of insects a natural phenomenon? Oikos 86:493–506

    Article  Google Scholar 

  • Hilker M, Meiners T (2006) Early herbivore alert: insect eggs induce plant defence. J Chem Ecol 32:1379–1397

    Article  PubMed  CAS  Google Scholar 

  • Hilker M, Bläske V, Kobs C, Dippel C (2000) Kairomonal effects of sawfly sex pheromones on egg parasitoids. J Chem Ecol 26:2591–2601

    Article  CAS  Google Scholar 

  • Huigens ME, Hohmann CL, Luck RF, Gort G, Stouthamer R (2004) Reduced competitive ability due to Wolbachia infection in the parasitoid wasp Trichogramma kaykai. Entomol Exp Appl 110:115–123

    Article  Google Scholar 

  • Huigens ME, Pashalidou FG, Qian MH, Bukovinszky T, Smid HM, van Loon JJA, Dicke M, Fatouros NE (2009) Hitch-hiking parasitic wasp learns to exploit butterfly anti-aphrodisiac. Proc Natl Acad Sci USA 106:820–825

    Article  PubMed  CAS  Google Scholar 

  • Huigens ME, Woelke JB, Pashalidou FG, Bukovinszky T, Smid HM, Fatouros NE (2010) Chemical espionage on species-specific butterfly anti-aphrodisiacs by hitchhiking Trichogramma wasps. Behav Ecol 21:470–478

    Article  Google Scholar 

  • Irvin NA, Hoddle MS, Morgan DJW (2006) Competition between Gonatocerus ashmeadi and G. triguttatus for glassy winged sharpshooter (Homalodisca coagulata) egg masses. Biocontrol Sci Technol 16:359–375

    Article  Google Scholar 

  • Jervis MA, Kidd NA, Fitton MG, Huddleston T, Dawah HA (1993) Flower-visiting by hymenoptera parasitoids. J Nat Hist 27:67–105

    Article  Google Scholar 

  • Kfir R, van Hamburg H (1988) Interspecific competition between Telenomus ullyetti (Hymenoptera: Scelionidae) and Trichogrammatoidea Lutea (Hymenoptera: Trichogrammatidae) parasitizing eggs of the cotton bollworm Heliothis armiger in the laboratory. Environ Entomol 17:664–670

    Google Scholar 

  • Laraichi M (1978) Étude de la compétition intra- et interspécifique chez les parasites oophages des punaises des blés (In French). Entomophaga 23:115–120

    Article  Google Scholar 

  • LaSalle J, Gauld ID (1993) Hymenoptera & biodiversity. CAB International, Wallingford, UK

    Google Scholar 

  • Laumann RA, Aquino MFS, Moraes MCB, Pareja M, Borges M (2009) Response of the egg parasitoids Trissolcus basalis and Telenomus podisi to compounds from defensive secretions of stink bugs. J Chem Ecol 35:8–19

    Article  PubMed  CAS  Google Scholar 

  • Lavandero B, Wratten S, Hagler J, Jervis M (2004) The need for effective marking and tracking techniques for monitoring the movements of insect predators and parasitoids. Int J Pest Manag 50:147–151

    Article  Google Scholar 

  • Lee SC (1979) Evaluation of Ooencyrtus submetallicus (Howard) and Trissolcus basalis (Wollaston) as egg parasites of Nezara viridula (Linnaeus). Ph.D. thesis, Louisiana State University, Baton Rouge, USA

  • Lei G, Hanski I (1998) Spatial dynamics of two competing specialist parasitoids in a host metapopulation. J Anim Ecol 67:422–433

    Article  Google Scholar 

  • Lewis WJ, Vet LEM, Tumlinson JH, van Lenteren JC, Papaj DR (1990) Variations in parasitoid foraging behavior: essential element of a sound biological control theory. Environ Entomol 19:1183–1193

    Google Scholar 

  • Lu YQ, Chen KW, He YR, Tang C, Ye JS (2006) Olfactory response of four species of trichogrammatid to kairomones of Corcyra cephalonica (Stainton). J South China Agri Univ 27:14–17

    Google Scholar 

  • Mackauer M (1990) Host discrimination and larval competition in solitary endoparasitoids. In: Mackauer M, Ehler LE, Roland J (eds) Critical issues in biological control. Intercept Ltd, Andover, UK, pp 41–62

    Google Scholar 

  • Meiners T, Hilker M (1997) Host location in Oomyzus gallerucae (Hymenoptera: Eulophidae), an egg parasitoid of the elm leaf beetle Xanthogaleruca luteola (Coleoptera: Chrysomelidae). Oecologia 112:87–93

    Article  Google Scholar 

  • Meiners T, Hilker M (2000) Induction of plant synomones by oviposition of a phytophagous insect. J Chem Ecol 26:221–232

    Article  CAS  Google Scholar 

  • Metcalfe JR, van Whervin LW (1965) Studies on mass-liberations and natural populations of the egg parasites of moth borer, Diatraea saccharalis (F.), in Barbados. Proc Int Soc Sugar-Cane Technol 12:1420–1434

    Google Scholar 

  • Milonas PG, Martinou AF, Kontodimas DC, Karamaouna F, Konstantopoulou MA (2009) Attraction of different Trichogramma species to Prays oleae sex pheromone. Ann Entomol Soc Am 102:1145–1150

    Article  Google Scholar 

  • Mizutani N (1994) Interspecific larval competition among three egg parasitoid species on the host, Riptortus clavatus (Thunberg) (Heteroptera: Alydidae). Proc Assoc Plant Prot Kyushu 40:106–110

    Article  Google Scholar 

  • Murdoch WW, Briggs CJ, Collier TR (1998) Biological control in insects: implications for theory in population ecology. In: Dempster JP, McLean FG (eds) Insect populations in theory and practice. Kluwer, Dordrecht, The Netherlands, pp 167–186

    Chapter  Google Scholar 

  • Nechols JR, Kauffman CR, Schaefer PW (1992) Significance of host specificity in classical biological control. In: Nechols JR, Kauffman CR (eds) Selection criteria and ecological consequences of importing natural enemies. Entomological Society of America (Proceedings Thomas Say Publications in Entomology), Lanham, USA, pp 41–52

    Google Scholar 

  • Nordlund DA, Lewis WJ, Altieri MA (1988) Influences of plant produced allelochemicals on the host and prey selection of entomophagous insects. In: Barbosa P, Letourneau DK (eds) Novel aspects of insect-plant interactions. Wiley, New York, USA, pp 65–90

    Google Scholar 

  • Pak GA, Oatman ER (1982) Comparative life table, behavior and competition studies of Trichogramma brevicapillum and T. pretiosum. Entomol Exp Appl 3:68–79

    Article  Google Scholar 

  • Pashalidou FG, Huigens ME, Dicke M, Fatouros NE (2010) The use of oviposition-induced plant cues by Trichogramma egg parasitoids. Ecol Entomol 35:748–753

    Article  Google Scholar 

  • Peri E, Sole MA, Wajnberg E, Colazza S (2006) Effect of host kairomones and oviposition experience on the arrestment behavior of an egg parasitoid. J Exp Biol 209:3629–3635

    Article  PubMed  Google Scholar 

  • Peri E, Cusumano A, Agro’ A, Colazza S (2011) Behavioral response of the egg parasitoid Ooencyrtus telenomicida to host-related chemical cues in a tritrophic perspective. BioControl 207:47–53

    Google Scholar 

  • Quicke DLJ (1997) Parasitic wasps. Chapman and Hall, London, UK

    Google Scholar 

  • Salerno G (2000) Evaluation of host specificity in pentatomid parasitoids through their response to the host unit. PhD thesis, University of Perugia, Italy

  • Salt G (1961) Competition among insect parasitoids. In: Milthorpe FL (ed) Symposia of the society for experimental biology, XV, mechanisms in biological competition. Academic Press, London, UK, pp 96–119

    Google Scholar 

  • Schulthess F, Chabi-Olaye A, Goergen G (2001) Seasonal fluctuations of noctuid stemborer egg parasitism in Southern Benin with special reference to Sesamia calamistis hampson (Lepidoptera: Noctuidae) and Telenomus spp. (Hymenoptera: Scelionidae) on Maize. Biocontrol Sci Technol 11:745–757

    Article  Google Scholar 

  • Sheehan W (1986) Response by specialist and generalist natural enemies to agroecosystem diversifcation: a selective review. Environ Entomol 15:456–461

    Google Scholar 

  • Sjaarda N (1989) Interactions between the harlequin bug Murgantia histrionica Hahn (Hemiptera: Pentatomidae), and the egg parasitoids, Trissolcus murgantie Ashm. (Hymenoptera: Scelionidae) and Ooencyrtus johnsonii How. (Hymenoptera: Encyrtidae): factors affecting patterns of parasitism in a southern California coastal sage habitat. PhD thesis, University of California, USA

  • Smith HS (1929) Multiple parasitism: its relation to the biological control of insect pests. Bull Entomol Res 20:141–149

    Article  Google Scholar 

  • Steidle JLM, van Loon JJA (2003) Dietary specialization and infochemical use in carnivorous arthropods: testing a concept. Entomol Exp Appl 108:133–148

    Article  Google Scholar 

  • Stiling P, Cornelissen T (2005) What makes a successful biocontrol agent? A meta-analysis of biological control agent performance. Biol Control 34:236–246

    Article  Google Scholar 

  • Strand MR (1986) The physiological interactions of parasitoids with their hosts and their influence on reproductive strategies. In: Waage J, Greathead D (eds) Insect parasitoids. Academic Press, London, UK, pp 97–136

    Google Scholar 

  • Strand MR, Vinson SB (1984) Facultative hyperparasitism by the egg parasitoid Trichogramma pretiosum (Hymenoptera: Trichogrammatidae). Ann Entomol Soc Am 77:679–686

    Google Scholar 

  • Subba Rao BR, Chacko MJ (1961) Multiparasitism by Aholcus Euproctiscidis Mani and Trichogramma evanescens minitum Riley in the eggs of Euproctis Lunata Walker. Indian Acad Sci 30:69–70

    Google Scholar 

  • Sujii ER, Marcico Costa ML, Soares Pires CS, Colazza S, Borges M (2002) Inter and intra-guild interactions in egg parasitoid species of the soybean stink bug complex. Pesq Agropec Bras 37:1541–1549

    Article  Google Scholar 

  • Thomson MS, Stinner RE (1988) Comparative responses of feral and laboratory Trichogramma spp. (Hymenoptera: Trichogrammatidae) to Heliothis spp. (Lepidoptera: Noctuidae) moth scales and inert particles. J Entomol Sci 23:245–250

    Google Scholar 

  • Thomson MS, Stinner RE (1990) The scale response of Trichogramma [Hymenoptera: Trichogrammatidae]: variation among species in host specificity and the effect of conditioning. Entomophaga 35:7–21

    Article  Google Scholar 

  • Tillman PG, Powell JP (1992) Interspecific discrimination and larval competition among Microplitis croceipes, Microplitis demolitor, Cotesia kazak (Hym: Braconidae) and Hyposoter didymator (Hym: Ichneumonidae) parasitoids of Heliothis virescens (Lep: Noctuidae). Entomophaga 37:439–451

    Article  Google Scholar 

  • Tumlinson JH, Lewis WJ, Vet LEM (1993) How parasitic wasps find their hosts. Sci Am 3:100–106

    Article  Google Scholar 

  • Turlings TCJ, McCall PJ, Alborn HA, Tumlinson JH (1993) An elicitor in caterpillar oral secretions that induces corn seedlings to emit chemical signals attractive to parasitic wasps. J Chem Ecol 19:141–172

    Article  Google Scholar 

  • Turnbull AL, Chant DA (1961) The practice and theory of biological control in Canada. Can J Zool 39:697–753

    Article  CAS  Google Scholar 

  • van Alphen JJM, Visser ME (1990) Superparasitism as an adaptive strategy for insect parasitoids. Annu Rev Entomol 35:59–74

    Article  PubMed  Google Scholar 

  • van Baaren J, Boivin G, Nénon JP (1994) Intra- and interspecific host discrimination in two closely related egg parasitoids. Oecologia 100:325–330

    Article  Google Scholar 

  • van Baaren J, Boivin G, Le Lannic J, Nénon JP (1997) The male and female first instar larvae of Anaphes victus and A. listronoti (Hymenoptera: Mymaridae). Zoomorphology 117:189–197

    Article  Google Scholar 

  • van Strien WT, van Liempt FH (1983) The competition between Asobara tabida Nees Von Esenbeck, and Leptopilina heterotoma (Thomson) in multiparasitized hosts. Neth J Zool 33:125–163

    Google Scholar 

  • Vet LEM (2001) Parasitoid searching efficiency links behaviour to population processes. Appl Entomol Zool 36:399–408

    Article  Google Scholar 

  • Vet LEM, Dicke M (1992) Ecology of infochemical use by natural enemies in a tritrophic context. Annu Rev Entomol 37:141–172

    Article  Google Scholar 

  • Vet LEM, Lewis WJ, Papaj DR, van Lenteren JC (1990) A variable response model for parasitoid foraging behavior. J Insect Behav 3:471–490

    Article  Google Scholar 

  • Vet LEM, Lewis WJ, Cardè R (1995) Parasitoid foraging and learning. In: Cardè R, Bell WJ (eds) Chemical ecology of insects. Chapman & Hall, New York, USA, pp 65–101

    Chapter  Google Scholar 

  • Vinson SB (1976) Host selection by insect parasitoids. Annu Rev Entomol 21:109–133

    Article  Google Scholar 

  • Vinson SB (1981) Habitat location. In: Norduland DA, Jones RL, Lewis WJ (eds) Semiochemicals, their role in pest control. Wiley, New York, USA, pp 51–78

    Google Scholar 

  • Vinson SB (1985) The behaviour of parasitoids. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology biochemistry and pharmacology. Pergamon, New York, USA, pp 417–469

    Google Scholar 

  • Vinson SB (1994) Physiological interactions between egg parasitoids and their hosts. In: Wajnberg E, Hassan SA (eds) Biological control with egg parasitoids. CAB International, Wallingford, UK, pp 245–271

    Google Scholar 

  • Vinson SB (1998) The general host selection behavior of parasitoid Hymenoptera and a comparison of initial strategies utilized by larvaphagous and oophagous species. Biol Control 11:79–97

    Article  Google Scholar 

  • Vinson SB (2010) Nutritional ecology of insect parasitoids. In: Parra JRP, Consoli FL, Zucchi RA (eds) Egg parasitoids in agroecosystems with emphysis on Trichogramma. Springer, Dordrecht, The Netherlands, pp 25–55

    Google Scholar 

  • Vinson SB, Hegazi EM (1998) A possible mechanism for the physiological suppression of conspecific eggs and larvae following superparasitism by solitary endoparasitoids. J Insect Physiol 44:703–712

    Article  PubMed  CAS  Google Scholar 

  • Vinson SB, Barfield CS, Henson RD (1977) Ovipositional behavior of Bracon mellitor Say, a parasitoid of boll weevil (Anthonomus grandis Boh.). II. Associative learning. J Physiol Entomol 2:157–164

    Article  CAS  Google Scholar 

  • Waage JK (1978) Arrestment responses of a parasitoid, Nemeritis canescens, to a contact chemical produced by its host, Plodia interpunctella. Physiol Entomol 3:135–146

    Article  Google Scholar 

  • Wanner H, Gu H, Hattendorf B, Gunther D, Dorn S (2006) Using the stable isotope marker 44Ca to study dispersal and host-foraging activity in parasitoids. J Appl Ecol 43:1031–1039

    Article  CAS  Google Scholar 

  • Weber CA, Smilanick JM, Ehler LE, Zalom FG (1996) Ovipositional behavior and host discrimination in three scelionid egg parasitoids of stink bugs. Biol Control 6:245–252

    Article  Google Scholar 

  • Zwolfer H (1971) The structure and effect of parasite complexes attacking phytophagous host insects. In: den Boer PJ, Gradwell GR (eds) Dynamics of populations: proceedings of the advanced study institute on ‘dynamics and numbers in populations’. Centre for Agricultural Publishing and Documentation, Wageningen, The Netherlands, pp 405–418

    Google Scholar 

Download references

Acknowledgment

This project was financially supported by the project of the Italian Ministry of Education, University and Research (MIUR) 2007 “Enhancing foraging behaviour of insect egg parasitoids: the role of the volatile organic compounds and the epicuticular layers of the plants”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonino Cusumano.

Additional information

Handling Editor: Torsten Meiners

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cusumano, A., Peri, E., Bradleigh Vinson, S. et al. Interspecific extrinsic and intrinsic competitive interactions in egg parasitoids. BioControl 57, 719–734 (2012). https://doi.org/10.1007/s10526-012-9451-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-012-9451-5

Keywords

Navigation