Skip to main content
Log in

Metabolites from Pseudomonas brassicacearum with activity against the pink snow mould causing pathogen Microdochium nivale

  • Published:
BioControl Aims and scope Submit manuscript

Abstract

Bioassay-guided fractionation of cell-free culture supernatants of the bacterium Pseudomonas brassicacearum MA250 yielded three bioactive compounds (1–3). Compound 1 was identified as the unsaturated fatty acid γ-lactone piliferolide A, compound 2 as the not previously described open acid form of 1, and 3 as the compound SB-253514, which is an imide of a 3-O-rhamnosyl fatty acid and a bicyclic carbamate. All three compounds displayed moderate activity towards the pink snow mould causing pathogen Microdochium nivale, and may thus contribute to the previously observed biological control of this strain on M. nivale on wheat. Compound 1 further exhibited activity towards the human pathogen Aspergillus fumigatus, while compound 3 showed antifungal as well as antibacterial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arima K, Imanaka H, Kousaka M, Fukuta A, Tamura G (1964) Pyrrolnitrin, a new antibiotic substance produced by Pseudomonas. Agric Biol Chem Tokyo 28:575–576

    Article  CAS  Google Scholar 

  • Ayer WA, Khan AQ (1994) Unsaturated fatty-acid lactones from the fungus Ophiostoma piliferum. Heterocycles 39:561–569

    Article  CAS  Google Scholar 

  • Borowicz JJ, Omer ZS (2000) Influence of rhizobacterial culture media on plant growth and on inhibition of fungal pathogens. BioControl 45:355–371

    Article  Google Scholar 

  • Busby DJ, Copley RCB, Hueso JA, Readshaw SA, Rivera A (2000) SB-253514 and analogues: novel inhibitors of lipoprotein associated phospholipase A2 produced by Pseudomonas fluorescens DSM 11579–II. Physico–chemical properties and structure elucidation. J Antibiot 53:670–676

    Article  PubMed  CAS  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  PubMed  CAS  Google Scholar 

  • Dowling DN, O’Gara F (1994) Metabolites of Pseudomonas involved in the biocontrol of plant disease. Trends Biotechnol 12:133–141

    Article  CAS  Google Scholar 

  • Gerhardson B (2002) Biological substitutes for pesticides. Trends Biotechnol 20:338–343

    Article  PubMed  CAS  Google Scholar 

  • Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Rev Microbiol 3:307–319

    Article  CAS  Google Scholar 

  • Leisinger T, Margraff R (1979) Secondary metabolites of the fluorescent Pseudomonads. Microbiol Rev 43:422–442

    PubMed  CAS  Google Scholar 

  • Levenfors JJ, Hedman R, Thaning C, Gerhardson B, Welch CJ (2004) Broad-spectrum antifungal metabolites produced by the soil bacterium Serratia plymuthica A 153. Soil Biol Biochem 36:677–685

    Article  CAS  Google Scholar 

  • Levenfors JP, Eberhard TH, Levenfors JJ, Gerhardson B, Hökeberg M (2008) Biological control of snow mould (Microdochium nivale) in winter cereals by Pseudomonas brassicacearum, MA250. BioControl 53:651–665

    Article  Google Scholar 

  • Ligon JM, Hill DS, Hammer PE, Torkewitz NR, Hofmann D, Kempf HJ, van Pee KH (2000) Natural products with antifungal activity from Pseudomonas biocontrol bacteria. Pest Manag Sci 56:688–695

    Article  CAS  Google Scholar 

  • Mathre DE, Cook RJ, Callan NW (1999) From discovery to use. Traversing the world of commercializing biocontrol agents for plant disease control. Plant Dis 83:972–983

    Article  Google Scholar 

  • Parry DW, Jenkinson P, McLeod L (1995) Fusarium ear blight (scab) in small grain cereals—a review. Plant Pathol 44:207–238

    Article  Google Scholar 

  • Pohanka A, Menkis A, Levenfors J, Broberg A (2006) Low-abundance Kutznerides from Kutzneria sp. 744. J Nat Prod 69:1776–1781

    Article  PubMed  CAS  Google Scholar 

  • Spadaro D, Gullino ML (2005) Improving the efficacy of biocontrol agents against soilborne pathogens. Crop Prot 24:601–613

    Article  Google Scholar 

  • Stanier RY, Palleron NJ, Doudorof M (1966) Aerobic Pseudomonads: a taxonomic study. J Gen Microbiol 43:159–271

    PubMed  CAS  Google Scholar 

  • Thaning C, Welch CJ, Borowicz JJ, Hedman R, Gerhardson B (2001) Suppression of Sclerotinia sclerotiorum apothecial formation by the soil bacterium Serratia plymuthica: identification of a chlorinated macrolide as one of the causal agents. Soil Biol Biochem 33:1817–1826

    Article  CAS  Google Scholar 

  • Thirkettle J, Alvarez E, Boyd H, Brown M, Diez E, Hueso J, Elson S, Fulston M, Gershater C, Morata ML, Perez P, Ready S, Sanchez-Puelles JM, Sheridan R, Stefanska A, Warr S (2000) SB-253514 and analogues; novel inhibitors of lipoprotein-associated phospholipase A2 produced by Pseudomonas fluorescens DSM 11579–I. Fermentation of producing strain, isolation and biological activity. J Antibiot 53:664–669

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Broberg.

Additional information

Handling Editor: Jesus Mercado Blanco

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andersson, P.F., Levenfors, J. & Broberg, A. Metabolites from Pseudomonas brassicacearum with activity against the pink snow mould causing pathogen Microdochium nivale . BioControl 57, 463–469 (2012). https://doi.org/10.1007/s10526-011-9411-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-011-9411-5

Keywords

Navigation