Skip to main content

Advertisement

Log in

Absence of collagen XVIII in mice causes age-related insufficiency in retinal pigment epithelium proteostasis

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Collagen XVIII has the structural properties of both collagen and proteoglycan. It has been found at the basement membrane/stromal interface where it is thought to mediate their attachment. Endostatin, a proteolytic fragment from collagen XVIII C-terminal end has been reported to possess anti-angiogenic properties. Age-related vision loss in collagen XVIII mutant mice has been accompanied with a pathological accumulation of deposits under the retinal pigment epithelium (RPE). We have recently demonstrated that impaired proteasomal and autophagy clearance are associated with the pathogenesis of age-related macular degeneration. This study examined the staining levels of proteasomal and autophagy markers in the RPE of different ages of the Col18a1 −/− mice. Eyes from 3, 6–7, 10–13 and 18 months old mice were enucleated and embedded in paraffin according to the routine protocol. Sequential 5 μm-thick parasagittal samples were immunostained for proteasome and autophagy markers ubiquitin (ub), SQSTM1/p62 and beclin-1. The levels of immunopositivity in the RPE cells were evaluated by confocal microscopy. Collagen XVIII knock-out mice had undergone age-related RPE degeneration accompanied by an accumulation of drusen-like deposits. Ub protein conjugate staining was prominent in both RPE cytoplasm and extracellular space whereas SQSTM1/p62 and beclin-1 stainings were clearly present in the basal part of RPE cell cytoplasm in the Col18a1 −/− mice. SQSTM1/p62 displayed mild extracellular space staining. Disturbed proteostasis regulated by collagen XVIII might be responsible for the RPE degeneration, increased protein aggregation, ultimately leading to choroidal neovascularization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Age-Related Eye Disease Study Research Group (2000) Risk factors associated with age-related macular degeneration: a case-control study in the age-related eye disease study: age-related eye disease study report number 3. Ophthalmology 107:2224–2232

    Article  PubMed Central  Google Scholar 

  • Aikio M, Hurskainen M, Brideau G, Hägg P, Sormunen R, Heljasvaara R, Gould DB, Pihlajaniemi T (2013) Collagen XVIII short isoform is critical for retinal vascularization, and overexpression of the Tsp-1 domain affects eye growth and cataract formation. Invest Ophthalmol Vis Sci 54(12):7450–7462. doi:10.1167/iovs.13-13039

    Article  CAS  PubMed  Google Scholar 

  • Bhutto IA, Kim SY, McLeod DS, Merges C, Fukai N, Olsen BR, Lutty GA (2004) Localization of collagen XVIII and the endostatin portion of collagen XVIII in aged human control eyes and eyes with age-related macular degeneration. Invest Ophthalmol Vis Sci 45(5):1544–1552

    Article  PubMed  Google Scholar 

  • Bjørkøy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, Stenmark H, Johansen T (2005) p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171:603–614

    Article  PubMed  PubMed Central  Google Scholar 

  • Boyault C, Zhang Y, Fritah S, Caron C, Gilquin B, Kwon SH, Garrido C, Yao TP, Vourc’h C, Matthias P, Khochbin S (2007) HDAC6 controls major cell response pathways to cytotoxic accumulation of protein aggregates. Genes Dev 21(17):2172–2181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braak H, Thal DR, Tredici KD (2011) Nerve cells immunoreactive for p62 in select hypothalamic and brainstem nuclei of controls and Parkinson’s disease cases. J Neural Transm 118:809–819

    Article  PubMed  Google Scholar 

  • Ferrington DA, Sinha D, Kaarniranta K (2015) Defects in retinal pigment epithelial cell proteolysis and the pathology associated with age-related macular degeneration. Prog Retin Eye Res 51:69–89

    Article  PubMed  Google Scholar 

  • Fukai N, Eklund L, Marneros AG, Oh SP, Keene DR, Tamarkin L, Niemelä M, Ilves M, Li E, Pihlajaniemi T, Olsen BR (2002) Lack of collagen XVIII/endostatin results in eye abnormalities. EMBO J 21(7):1535–1544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geetha T, Vishwaprakash N, Sycheva M, Babu JR (2012) Sequestosome 1/p62: across diseases. Biomarkers 17:99–103

    Article  CAS  PubMed  Google Scholar 

  • Hurskainen M, Eklund L, Hägg PO, Fruttiger M, Sormunen R, Ilves M, Pihlajaniemi T (2005) Abnormal maturation of the retinal vasculature in type XVIII collagen/endostatin deficient mice and changes in retinal glial cells due to lack of collagen types XV and XVIII. FASEB J 19(11):1564–1566

    CAS  PubMed  Google Scholar 

  • Johansson I, Monsen VT, Pettersen K, Mildenberger J, Misund K, Kaarniranta K, Schønberg S, Bjørkøy G (2015) The marine n-3 PUFA DHA evokes cytoprotection against oxidative stress and protein misfolding by inducing autophagy and NFE2L2 in human retinal pigment epithelial cells. Autophagy 11(9):1636–1651. doi:10.1080/15548627.2015.1061170

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaarniranta K, Salminen A, Eskelinen EL, Kopitz J (2009) Heat shock proteins as gatekeepers of proteolytic pathways—implications for age-related macular degeneration (AMD). Ageing Res Rev 8:128–139

    Article  CAS  PubMed  Google Scholar 

  • Kaarniranta K, Hyttinen J, Ryhanen T, Viiri J, Paimela T, Toropainen E, Sorri I, Salminen A (2010) Mechanisms of protein aggregation in the retinal pigment epithelial cells. Front Biosci 2:1374–1384

    Article  Google Scholar 

  • Kaarniranta K, Salminen A, Haapasalo A, Soininen H, Hiltunen M (2011) Age-related macular degeneration (AMD): Alzheimer’s disease in the eye? J Alzheimers Dis 24:615–631

    CAS  PubMed  Google Scholar 

  • Kaarniranta K, Sinha D, Blasiak J, Kauppinen A, Veréb Z, Salminen A, Boulton ME, Petrovski G (2013) Autophagy and heterophagy dysregulation leads to retinal pigment epithelium dysfunction and development of age-related macular degeneration. Autophagy 9:973–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kannan R, Sreekumar PG, Hinton DR (2016) Alpha crystallins in the retinal pigment epithelium and implications for the pathogenesis and treatment of age-related macular degeneration. Biochim Biophys Acta 1860:258–268. doi:10.1016/j.bbagen.2015.05.016

    Article  CAS  PubMed  Google Scholar 

  • Kauppinen A, Paterno JJ, Blasiak J, Salminen A, Kaarniranta K (2016) Inflammation and its role in age-related macular degeneration. Cell Mol Life Sci 73:1765–1786. doi:10.1007/s00018-016-2147-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kivinen N, Hyttinen JMT, Viiri J, Paterno JJ, Felszheghy S, Kauppinen A, Salminen A, Kaarniranta K (2014) Hsp 70 binds reversibly to proteasome inhibitor-induced protein aggregates and evades autophagic clearance in ARPE-19 cells. J Biochem Pharmacol Res 2(1):1–7

    Google Scholar 

  • Klettner A (2014) VEGF-A and its inhibitors in age-related macular degeneration—pharmacokinetic differences and their retinal and systemic implications. J Biochem Pharmacol Res 2(1):8–20

    CAS  Google Scholar 

  • Klettner A, Kauppinen A, Blasiak J, Roider J, Salminen A, Kaarniranta K (2013) Cellular and molecular mechanisms of age-related macular degeneration: from impaired autophagy to neovascularization. Int J Biochem Cell Biol 45:1457–1467. doi:10.1016/j.biocel.2013.04.013

    Article  CAS  PubMed  Google Scholar 

  • Klionsky DJ, Schulman BA (2014) Dynamic regulation of macroautophagy by distinctive ubiquitin-like proteins. Nat Struct Mol Biol 21(4):336–345. doi:10.1038/nsmb.2787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klionsky D et al (2016) Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12(1):1–222

    Article  PubMed  Google Scholar 

  • Komatsu M, Waguri S, Koike M, Sou YS, Ueno T, Hara T, Mizushima N, Iwata J, Ezaki J et al (2007) Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131(6):1149–1163

    Article  CAS  PubMed  Google Scholar 

  • Korolchuk VI, Menzies FM, Rubinsztein DC (2009) A novel link between autophagy and the ubiquitin–proteasome system. Autophagy 5:862–863

    Article  PubMed  Google Scholar 

  • Krohne TU, Kaemmerer E, Holz FG, Kopitz J (2010) Lipid peroxidation products reduce lysosomal protease activities in human retinal pigment epithelial cells via two different mechanisms of action. Exp Eye Res 90(2):261–266. doi:10.1016/j.exer.2009.10.014

    Article  CAS  PubMed  Google Scholar 

  • Kuusisto E, Salminen A, Alafuzoff I (2001) Ubiquitin-binding protein p62 is present in neuronal and glial inclusions in human tauopathies and synucleinopathies. Neuroreport 12:2085–2090

    Article  CAS  PubMed  Google Scholar 

  • Kuusisto E, Salminen A, Alafuzoff I (2002) Early accumulation of p62 in neurofibrillary tangles in Alzheimer’s disease: possible role in tangle formation. Neuropathol Appl Neurobiol 28:228–237

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Wang YS, Shen XF, Hui YN, Han J, Zhao W, Zhu J (2008) Alterations of activity and intracellular distribution of the 20S proteasome in ageing retinal pigment epithelial cells. Exp Gerontol 43:1114–1122

    Article  CAS  PubMed  Google Scholar 

  • Lilienbaum A (2013) Relationship between the proteasomal system and autophagy. Int J Biochem Mol Biol 4:1–26

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marneros AG, Olsen BR (2005) Physiological role of collagen XVIII and endostatin. FASEB J 19(7):716–728

    Article  CAS  PubMed  Google Scholar 

  • Marneros AG, Keene DR, Hansen U, Fukai N, Moulton K, Goletz PL, Moiseyev G, Pawlyk BS, Halfter W, Dong S, Shibata M, Li T, Crouch RK, Bruckner P, Olsen BR (2004) Collagen XVIII/endostatin is essential for vision and retinal pigment epithelial function. EMBO J 23(1):89–99

    Article  CAS  PubMed  Google Scholar 

  • Mei W, Dong C, Hui C, Bin L, Fenggen Y, Jingjing S, Cheng P, Meiling S, Yawen H, Xiaoshan W, Guanghui W, Zhiwu C, Qinglin L (2014) Gambogenic acid kills lung cancer cells through aberrant autophagy. PLoS One 9(1):e83604. doi:10.1371/journal.pone.0083604

    Article  PubMed  PubMed Central  Google Scholar 

  • Mitter SK, Song C, Qi X, Mao H, Rao H, Akin D, Lewin A, Grant M, Dunn W Jr, Ding J, Bowes Rickman C, Boulton M (2014) Dysregulated autophagy in the RPE is associated with increased susceptibility to oxidative stress and AMD. Autophagy 10(11):1989–2005. doi:10.4161/auto.36184

    Article  PubMed  PubMed Central  Google Scholar 

  • Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147:728–741

    Article  CAS  PubMed  Google Scholar 

  • Mullins RF, Russell SR, Anderson DH, Hageman GS (2000) Drusen associated with aging and age-related macular degeneration contain proteins common to extracellular deposits associated with atherosclerosis, elastosis, amyloidosis, and dense deposit disease. FASEB J 14(7):835–846

    CAS  PubMed  Google Scholar 

  • Nguyen TM, Subramanian IV, Xiao X, Ghosh G, Nguyen P, Kelekar A, Ramakrishnan S (2009) Endostatin induces autophagy in endothelial cells by modulating beclin 1 and beta-catenin levels. J Cell Mol Med 13(9B):3687–3698. doi:10.1111/j.1582-4934.2009.00722.x

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Brien CE, Wyss-Coray T (2014) Sorting through the roles of beclin 1 in microglia and neurodegeneration. J Neuroimmune Pharmacol 3:285–292. doi:10.1007/s11481-013-9519-8

    Article  Google Scholar 

  • Ohlmann AV, Ohlmann A, Welge-Lüssen U, May CA (2005) Localization of collagen XVIII and endostatin in the human eye. Curr Eye Res 30(1):27–34

    Article  CAS  PubMed  Google Scholar 

  • Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Øvervatn A, Bjørkøy G, Johansen T (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282(33):24131–24145

    Article  CAS  PubMed  Google Scholar 

  • Pankiv S, Lamark T, Bruun JA, Øvervatn A, Bjørkøy G, Johansen T (2010) Nucleocytoplasmic shuttling of p62/SQSTM1 and its role in recruitment of nuclear polyubiquitinated proteins to promyelocytic leukemia bodies. J Biol Chem 285(8):5941–5953. doi:10.1074/jbc.M109.039925

    Article  CAS  PubMed  Google Scholar 

  • Pascolini D, Mariotti SP, Pokharel GP et al (2002) Global update of available data on visual impairment: a compilation of population-based prevalence studies. Ophthalmic Epidemiol 2004:67–115

    Google Scholar 

  • Rakoczy PE, Mann K, Cavaney DM, Robertson T, Papadimitreou IJ (1994) Constable, detection and possible functions of a cysteine protease involved in digestion of rod outer segments by retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 35:4100–4108

    CAS  PubMed  Google Scholar 

  • Rein DB, Wittenborn JS, Zhang X, Honeycutt AA, Lesesne SB, Saaddine J (2009) Forcasting age-related macular degeneration through the year 2050: the potential impact of new treatments. Arch Ophthalmol 127:533–540

    Article  PubMed  Google Scholar 

  • Rodríguez-Muela N, Koga H, García-Ledo L, de la Villa P, de la Rosa EJ, Cuervo AM, Boya P (2013) Balance between autophagic pathways preserves retinal homeostasis. Aging Cell 12(3):478–488. doi:10.1111/acel.12072

    Article  PubMed  Google Scholar 

  • Ryhänen T, Hyttinen JM, Kopitz J, Rilla K, Kuusisto E, Mannermaa E, Viiri J, Holmberg CI, Immonen I, Meri S, Parkkinen J, Eskelinen EL, Uusitalo H, Salminen A, Kaarniranta K (2009) Crosstalk between Hsp70 molecular chaperone, lysosomes and proteasomes in autophagy-mediated proteolysis in human retinal pigment epithelial cells. J Cell Mol Med 13(9B):3616–3631. doi:10.1111/j.1582-4934.2008.00577.x

    Article  PubMed  Google Scholar 

  • Salminen A, Kaarniranta K, Haapasalo A, Hiltunen M, Soininen H, Soininen H, Alafuzoff I (2012) Emerging role of p62/sequestosome-1 in the pathogenesis of Alzheimer’s disease. Prog Neurobiol 96:87–95

    Article  CAS  PubMed  Google Scholar 

  • Sertié AL, Sossi V, Camargo AA, Zatz M, Brahe C, Passos-Bueno MR (2000) Collagen XVIII, containing an endogenous inhibitor of angiogenesis and tumor growth, plays a critical role in the maintenance of retinal structure and in neural tube closure (Knobloch syndrome). Hum Mol Genet 9(13):2051–2058

    Article  PubMed  Google Scholar 

  • Sunness JS, Rubin GS, Applegate CA et al (1997) Visual function abnormalities and prognosis in eyes with age-related geographic atrophy of the macula and good visual acuity. Ophthalmology 104:1677–1691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tolentino MJ, Dennrick A, John E, Tolentino MS (2014) Drugs in phase II clinical trials for the treatment of age-related macular degeneration. Expert Opin Investig Drugs 22:1–17

    Google Scholar 

  • Toops KA, Tan LX, Jiang Z, Radu RA, Lakkaraju A (2015) Cholesterol-mediated activation of acid sphingomyelinase disrupts autophagy in the retinal pigment epithelium. Mol Biol Cell 26(1):1–14. doi:10.1091/mbc.E14-05-1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valapala M, Wilson C, Hose S, Bhutto IA, Grebe R, Dong A, Greenbaum S, Gu L, Sengupta S, Cano M, Hackett S, Xu G, Lutty GA, Dong L, Sergeev Y, Handa JT, Campochiaro P, Wawrousek E, Zigler JS Jr, Sinha D (2014) Lysosomal-mediated waste clearance in retinal pigment epithelial cells is regulated by CRYBA1/βA3/A1-crystallin via V-ATPase-MTORC1 signaling. Autophagy 10(3):480–496. doi:10.4161/auto.27292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viiri J, Hyttinen JM, Ryhänen T, Rilla K, Paimela T, Kuusisto E, Siitonen A, Urtti A, Salminen A, Kaarniranta K (2010) p62/sequestosome 1 as a regulator of proteasome inhibitor-induced autophagy in human retinal pigment epithelial cells. Mol Vis 16:1399–1414

    CAS  PubMed  PubMed Central  Google Scholar 

  • Viiri J, Amadio M, Marchesi N, Hyttinen JMT, Kivinen N, Sironen R, Rilla K, Akhtar S, Provenzani A, D’Agostino VG, Govoni S, Pascale A, Agostini H, Petrovski G, Salminen A, Kaarniranta K (2013) Autophagy activation clears ELAVL1/HuR-mediated accumulation of SQSTM1/p62 during proteasomal inhibition in human retinal pigment epithelial cells. PLoS One 8(7):e69563. doi:10.1371/journal.pone.0069563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang AL, Lukas TJ, Yuan M, Du N, Tso MO, Neufeld AH (2009) Autophagy and exosomes in the aged retinal pigment epithelium: possible relevance to drusen formation and age-related macular degeneration. PLoS One 4(1):e4160. doi:10.1371/journal.pone.0004160

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang L, Cano M, Handa JT (2014) p62 provides dual cytoprotection against oxidative stress in the retinal pigment epithelium. Biochim Biophys Acta 1843(7):1248–1258. doi:10.1016/j.bbamcr.2014.03.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Ebrahimi KB, Chyn M, Cano M, Handa JT (2016) Biology of p62/sequestosome-1 in age-related macular degeneration (AMD). Adv Exp Med Biol 854:17–22. doi:10.1007/978-3-319-17121-0_3

    Article  PubMed  Google Scholar 

  • Xu H, Ren D (2015) Lysosomal physiology. Annu Rev Physiol 77:57–80. doi:10.1146/annurev-physiol-021014-071649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu W, Ye P, Li Z, Shi J, Wang W, Yao K (2010) Endostar, a recently introduced recombinant human endostatin, inhibits proliferation and migration through regulating growth factors, adhesion factors and inflammatory mediators in choroid-retinal endothelial cells. Mol Biol 44(4):664–670

    Article  Google Scholar 

  • Yang Z, Klionsky DJ (2010) Eaten alive: a history of macroautophagy. Nat Cell Biol 2:814–822

    Article  Google Scholar 

  • Yao J, Jia L, Khan N, Lin C, Mitter SK, Boulton ME, Dunaief JL, Klionsky DJ, Guan JL, Thompson DA, Zacks DN (2015) Deletion of autophagy inducer RB1CC1 results in degeneration of the retinal pigment epithelium. Autophagy 11(6):939–953. doi:10.1080/15548627.2015.1041699

    Article  PubMed  PubMed Central  Google Scholar 

  • Ylikärppä R, Eklund L, Sormunen R, Kontiola AI, Utriainen A, Määttä M, Fukai N, Olsen BR, Pihlajaniemi T (2003) Lack of type XVIII collagen results in anterior ocular defects. FASEB J 17(15):2257–2259

    PubMed  Google Scholar 

  • Zatloukal K, Stumptner C, Fuchsbichler A, Heid H, Schnoelzer M, Kenner L, Kleinert R, Prinz M, Aguzzi A, Denk H (2002) p62 is a common component of cytoplasmic inclusions in protein aggregation diseases. Am J Pathol 160:255–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Bai Y, Huang L, Qi Y, Zhang Q, Li S, Wu Y, Li X (2015) Protective effect of autophagy on human retinal pigment epithelial cells against lipofuscin fluorophore A2E: implications for age-related macular degeneration. Cell Death Dis 6:e1972. doi:10.1038/cddis.2015.330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Q, Ziemssen F, Henke-Fahle S, Tatar O, Szurman P, Aisenbrey S, Schneiderhan-Marra N, Xu X, Tübingen Bevacizumab Study Group, Grisanti S (2008) Vitreous levels of bevacizumab and vascular endothelial growth factor-A in patients with choroidal neovascularization. Ophthalmology 115(10):1750–1755. doi:10.1016/j.ophtha.2008.04.023

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by VTR grand of Kuopio University Hospital, The Finnish Eye Foundation, Evald and Hilda Nissi Foundation and Janos Bolyai fellowship of the Hungarian Academy of Science (Sz. F.). We thank Ewen McDonald for checking the language and warmly acknowledge the importance of the critical technical help from Anne Seppänen, Tünde Pálné Terdik and Zoltán Hegyi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niko Kivinen.

Additional information

Niko Kivinen, Szabolcs Felszeghy, Anu Kauppinen and Kai Kaarniranta have contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kivinen, N., Felszeghy, S., Kinnunen, A.I. et al. Absence of collagen XVIII in mice causes age-related insufficiency in retinal pigment epithelium proteostasis. Biogerontology 17, 749–761 (2016). https://doi.org/10.1007/s10522-016-9647-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-016-9647-7

Keywords

Navigation