Skip to main content
Log in

The somatotropic axis may not modulate ageing and longevity in humans

  • Opinion Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Studies in nematodes and mice have shown that the somatotropic axis can modulate their longevity and it has been argued that it could also modulate human longevity. Thus, like nematodes and mice, human beings should live longer when facing starvation and genetic variation of the somatotropic axis should be linked to longevity. This article argues that, because the life-history strategies of humans are very different from those of mice, these hypotheses are not warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aguiar-Oliveira MH, Oliveira FT, Pereira RM, Oliveira CR, Black- ford A, Valenca EH, Santos EG, Gois-Junior MB, Meneguz-Moreno RA, Araujo VP, Oliveira-Neto LA, Almeida RP, Santos MA, Farias NT, Silveira DC, Cabral GW, Calazans FR, Seabra JD, Lopes TF, Rodrigues EO, Porto LA, Oliveira IP, Melo EV, Martari M, Salvatori R (2010) Longevity in untreated congenital growth hormone deficiency due to a homozygous mutation in the GHRH receptor gene. J Clin Endocrinol Metab 95:714–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Austad SN (2012) Mixed results for dieting monkeys. Nature 489:210–211

    CAS  PubMed  Google Scholar 

  • Bao JM, Song XL, Hong YQ, Zhu HL, Li C, Zhang T, Chen W, Zhao SC, Chen Q (2014) Association between FOXO3A gene polymorphisms and human longevity: a meta-analysis. Asian J Androl 16:446–452

    Article  PubMed  PubMed Central  Google Scholar 

  • Barbieri M, Bonafè M, Franceschi C, Paolisso G (2003) Insulin/IGF-1 signaling pathway: an evolutionary conserved mechanism of longevity from yeast to humans. Am J Physiol Endocrinol Metab 285:E1064–E1071

    Article  CAS  PubMed  Google Scholar 

  • Bartke A (2005) Minireview: role of the growth hormone/insulin-like growth factor system in mammalian aging. Endocrinol 146:3718–3723

    Article  CAS  Google Scholar 

  • Bartke A, Sun LY, Longo V (2013) Somatotropic signaling: trade-offs between growth, reproductive development, and longevity. Physiol Rev 93:571–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertrand HA, Herlihy JT, Ikeno Y, Yu BP (1999) Dietary restriction. In: Yu BP (ed) Methods in Aging Research. CRC Press, Boca Raton, pp 271–300

    Google Scholar 

  • Besson A, Salemi S, Gallati S, Jenal A, Horn R, Mullis PS, Mullis PE (2003) Reduced longevity in untreated patients with isolated growth hormone deficiency. J Clin Endocrinol Metab 88:3364–3367

    Article  Google Scholar 

  • Braeckman BP, Demetrius L, Vanfleteren J (2006) The dietary restriction in C. elegans and humans: is the worm a one-millimeter human? Biogerontology 7:127–133

    Article  PubMed  Google Scholar 

  • Cava E, Fontana L (2013) Will calorie restriction work in humans? Aging (Albany NY) 5:507–514

    Article  Google Scholar 

  • Clancy DJ, Gems D, Harshman LG, Oldham S, Stocker H, Hafen E, Leevers SJ, Partridge L (2001) Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science 292:104–106

    Article  CAS  PubMed  Google Scholar 

  • Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM, Allison DB, Cruzen C, Simmons HA, Kemnitz JW, Weindruch R (2009) Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325:201–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colman RJ, Beasley TM, Kemnitz JW, Johnson SC, Weindruch R, Anderson RM (2014) Caloric restriction reduces age-related and all-cause mortality in rhesus monkeys. Nat Commun 5:3557

    Article  PubMed  PubMed Central  Google Scholar 

  • de Cabo R, Carmona-Gutierrez D, Bernier M, Hall MN, Madeo F (2014) The search for antiaging interventions: from elixirs to fasting regimens. Cell 157:1515–1526

    Article  PubMed  PubMed Central  Google Scholar 

  • de Grey ADNJ (2005) The unfortunate influence of the weather on the rate of ageing: why human caloric restriction or its emulation may only extend life expectancy by 2–3 years. Gerontology 51:73–82

    Article  PubMed  Google Scholar 

  • Demetrius L (2005) Of mice and men. When it comes to studying ageing and the means to slow it down, mice are not just small humans. EMBO Rep 6:S39–S44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flachsbart F, Caliebe A, Kleindorp R, Blanché H, von Eller-Eberstein H, Nikolaus S, Schreiber S, Nebel A (2009) Association of FOXO3A variation with human longevity confirmed in German centenarians. Proc Natl Acad Sci USA 106:2700–2705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fontana L, Colman RJ, Holloszy JO, Weindruch R (2011) Calorie restriction in nonhuman and human primates. In: Masoro EJ, Austad SN (eds) Handbook of the biology of aging, 7th edn. Academic press, San Diego, pp 447–462

    Chapter  Google Scholar 

  • Friedman DB, Johnson TE (1988) Three mutants that extend both mean and maximum lifespan of the nematode, Caenorhabditis elegans, define the age-1 gene. J Gerontol Biol Sci 43:B102–B109

    Article  CAS  Google Scholar 

  • Galis F, Van der Sluijs I, Van Dooren TJM, Metz JAJ, Nussbaumer M (2007) Do large dogs die young? J Exp Zool (Mol Dev Evol) 308b:119–126

    Article  Google Scholar 

  • Gavrilova NS, Gavrilov LA (2012) Comments on dietary restriction, Okinawa diet and longevity. Gerontology 58:221–223

    Article  PubMed  PubMed Central  Google Scholar 

  • Hallengren E, Almgren P, Engström G, Hedblad B, Persson M, Suhr M, Bergmann A, Melander O (2014) Fasting levels of high-sensitivity growth hormone predict cardiovascular morbidity and mortality: the Malmö Diet and cancer study. J Am Coll Cardiol 64:1452–1460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He Q, Morris BJ, Grove JS, Petrovitch H, Ross W, Masaki KH, Rodriguez B, Chen R, Donlon TA, Willcox DC, Willcox B (2014) Shorter men live longer: association of height with longevity and FOXO3 genotype in American men of Japanese ancestry. PLoS ONE 9:e94385

    Article  PubMed  PubMed Central  Google Scholar 

  • Heidler T, Hartwig K, Daniel H, Wenzel U (2010) Caenorhabditis elegans lifespan extension caused by treatment with an orally active ROS-generator is dependent on DAF-16 and SIR-2.1. Biogerontology 11:183–195

    Article  CAS  PubMed  Google Scholar 

  • Holliday R (1989) Food reproduction and longevity: is the extended lifespan of calorie-restricted animals an evolutionary adaptation? BioEssays 10:125–127

    Article  CAS  PubMed  Google Scholar 

  • Holzenberger M, Martin-Crespo RM, Vicent D, Ruiz-Torres A (1991) Decelerated growth and longevity in men. Arch Gerontol Geriatr 13:89–101

    Article  CAS  PubMed  Google Scholar 

  • Hunt PR, Son TG, Wilson MA, Yu QS, Wood WH, Zhang Y, Becker KG, Greig NH, Mattson MP, Camandola S, Wolkow CA (2011) Extension of lifespan in C. elegans by naphthoquinones that act through stress hormesis mechanisms. PLoS ONE 6(7):e21922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaeberlein TL, Smith ED, Tsuchiya M, Welton KL, Thomas JH, Fields S, Kennedy BK, Kaeberlein M (2006) Lifespan extension in Caenorhabditis elegans by complete removal of food. Aging Cell 5:487–494

    Article  CAS  PubMed  Google Scholar 

  • Kemkes-Grottenthaler A (2005) The short die young: the interrelationship between stature and longevity—evidence from skeletal remains. Am J Physiol Anthropol 128:340–347

    Article  Google Scholar 

  • Kenyon CJ (2010) The genetics of ageing. Nature 464:504–512

    Article  CAS  PubMed  Google Scholar 

  • Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R (1993) A C. elegans mutant that lives twice as long as wild type. Nature 366:461–464

    Article  CAS  PubMed  Google Scholar 

  • Klass MR (1983) A method for the isolation of longevity mutants in the nematode Caenorhabditis elegans and initial results. Mech Ageing Dev 22:279–286

    Article  CAS  PubMed  Google Scholar 

  • Klass MR, Hirsh D (1976) Non-ageing developmental variant of Caenorhabditis elegans. Nature 260:523–525

    Article  CAS  PubMed  Google Scholar 

  • Kraus C, Pavard S, Promislow DEL (2013) The size-life span trade-off decomposed: why large dogs die young. Am Nat 181:492–505

    Article  PubMed  Google Scholar 

  • Kržišnik C, Grgurić S, Cvijović K, Laron Z (2010) Longevity of the hypopituitary patients from the island Krk: a follow-up study. Pediatr Endocrinol Rev 7:357–362

    PubMed  Google Scholar 

  • Le Bourg E (2005) Calorie restriction to retard aging and increase longevity. Presse Méd 34:121–127

    Article  PubMed  Google Scholar 

  • Le Bourg E (2006) Dietary restriction would probably not increase longevity in human beings and other species able to leave unsuitable environments. Biogerontology 7:149–152

    Article  PubMed  Google Scholar 

  • Le Bourg E (2010) Predicting whether dietary restriction would increase longevity in species not tested so far. Ageing Res Rev 9:289–297

    Article  PubMed  Google Scholar 

  • Le Bourg E (2012a) Dietary restriction studies in humans: focusing on obesity, forgetting longevity. Gerontology 58:126–128

    Article  PubMed  Google Scholar 

  • Le Bourg E (2012b) Dietary restriction in humans: a response to Drs Gavrilova and Gavrilov. Gerontology 58:224–226

    Article  Google Scholar 

  • Le Bourg E (2013) Obsolete ideas and logical confusions can be obstacles for biogerontology research. Biogerontology 14:221–227

    Article  PubMed  Google Scholar 

  • Maison P, Balkau B, Simon D, Chanson P, Rosselin G, Eschwege E (1998) Growth hormone as a risk for premature mortality in healthy subjects: data from the Paris prospective study. Br Med J 316:1132–1133

    Article  CAS  Google Scholar 

  • Mattison JA, Roth GS, Beasley TM, Tilmont EM, Handy AM, Herbert RL, Longo DL, Allison DB, Young JE, Bryant M, Barnard D, Ward WF, Qi W, Ingram DK, de Cabo R (2012) Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature 489:318–321

    Article  CAS  PubMed  Google Scholar 

  • Miller DL, Roth MB (2007) Hydrogen sulfide increases thermotolerance and lifespan in Caenorhabditis elegans. Proc Natl Acad Sci USA 104:20618–20622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milman S, Atzmon G, Huffman DM, Wan J, Crandall JP, Cohen P, Barzilai N (2014) Low insulin-like growth factor-1 level predicts survival in humans with exceptional longevity. Aging Cell 13:769–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakagawa S, Lagisz M, Hector KL, Spencer HG (2012) Comparative and meta-analytic insights into life extension via dietary restriction. Aging Cell 11:401–409

    Article  CAS  PubMed  Google Scholar 

  • Nygaard M, Lindahl-Jacobsen R, Soerensen M, Mengel-From J, Andersen-Ranberg K, Jeune B, Vaupel JW, Tan Q, Christiansen L, Christensen K (2014) Birth cohort differences in the prevalence of longevity-associated variants in APOE and FOXO3A in Danish long-lived individuals. Exp Gerontol 57:41–46

    Article  CAS  PubMed  Google Scholar 

  • Passtoors WM, Beekman M, Deelen J, van der Breggen R, Maier AB, Guigas B, Derhovanessian E, van Heemst D, de Craen AJ, Gunn DA, Pawelec G, Slagboom PE (2013) Gene expression analysis of mTOR pathway: association with human longevity. Aging Cell 12:24–31

    Article  CAS  PubMed  Google Scholar 

  • Phelan JP, Austad SN (1989) natural selection, dietary restriction, and extended longevity. Growth Dev Aging 53:4–6

    CAS  PubMed  Google Scholar 

  • Phelan JP, Rose MR (2005) Why dietary restriction substantially increases longevity in animal models but won’t in humans. Ageing Res Rev 4:339–350

    Article  CAS  PubMed  Google Scholar 

  • Pianka ER (1970) On r and K selection. Am Nat 102:592–597

    Article  Google Scholar 

  • Piper MD, Partridge L, Raubenheimer D, Simpson SJ (2011) Dietary restriction and aging: a unifying perspective. Cell Metab 14:154–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puig O, Mattila J (2011) Understanding Forkhead box class O function: lessons from Drosophila melanogaster. Antioxid Redox Signal 14:635–647

    Article  CAS  PubMed  Google Scholar 

  • Redman LM, Ravussin E (2011) Caloric restriction in humans: impact on physiological, psychological, and behavioral outcomes. Antioxid Redox Signal 14:275–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salaris L, Poulain M, Samaras TT (2012) Height and survival at older ages among men born in an inland village in Sardinia (Italy), 1866–2006. Biodemogr Soc Biol 58:1–13

    Article  Google Scholar 

  • Shadyab AH, LaCroix AZ (2015) Genetic factors associated with longevity: a review of recent findings. Ageing Res Rev 19:1–7

    Article  CAS  PubMed  Google Scholar 

  • Shanley DP, Kirkwood TBL (2006) Caloric restriction does not enhance longevity in all species and is unlikely to do so in humans. Biogerontology 7:165–168

    Article  PubMed  Google Scholar 

  • Soerensen M, Dato S, Christensen K, McGue M, Stevnsner T, Bohr VA, Christiansen L (2010) Replication of an association of variation in the FOXO3A gene with human longevity using both case-control and longitudinal data. Aging Cell 9:1010–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soerensen M, Dato S, Tan Q, Thinggaard M, Kleindorp R, Beekman M, Jacobsen R, Suchiman HE, de Craen AJ, Westendorp RG, Schreiber S, Stevnsner T, Bohr VA, Slagboom PE, Nebel A, Vaupel JW, Christensen K, McGue M, Christiansen L (2012) Human longevity and variation in GH/IGF-1/insulin signaling, DNA damage signaling and repair and pro/antioxidant pathway genes: cross sectional and longitudinal studies. Exp Gerontol 47:379–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soerensen M, Nygaard M, Dato S, Stevnsner T, Bohr VA, Christensen K, Christiansen L (2015) Association study of FOXO3A SNPs and aging phenotypes in Danish oldest-old individuals. Aging Cell 14:60–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stearns SC (1983) The influence of size and phylogeny on patterns of covariation among life-history traits in the mammals. Oikos 41:173–187

    Article  Google Scholar 

  • Stewart ST, Cutler DM, Rosen AB (2009) Forecasting the effects of obesity and smoking on U.S. life expectancy. N Engl J Med 361:2252–2260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swindell WR (2012) Dietary restriction in rats and mice: a meta-analysis and review of the evidence for genotype-dependent effects on lifespan. Ageing Res Rev 11:254–270

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Voorhies WA, Fuchs J, Thomas S (2005) The longevity of Caenorhabditis elegans in soil. Biol Lett 1:247–249

    Article  PubMed  PubMed Central  Google Scholar 

  • Wade N (2009) Dieting monkeys offer hope for living longer. New York Times, New York edition, page A1. http://www.nytimes.com/2009/07/10/science/10aging.html

  • Walford RL, Mock D, Verdery R, MacCallum T (2002) Calorie restriction in Biosphere 2: alterations in physiologic, hematologic, hormonal, and biochemical parameters in humans restricted for a 2-year period. J Geront Biol Sci 57A:B211–B224

    Article  Google Scholar 

  • Willcox DC, Willcox BJ, Todoriki H, Curb JD, Suzuki M (2006) Caloric restriction and human longevity: what can we learn from the Okinawans? Biogerontology 7:173–177

    Article  PubMed  Google Scholar 

  • Ziv E, Hu D (2011) Genetic variation in insulin/IGF-1 signaling pathways and longevity. Ageing Res Rev 10:201–204

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Many thanks are due to Simon Galas, University of Montpellier, France, and to anonymous referees for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Éric Le Bourg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le Bourg, É. The somatotropic axis may not modulate ageing and longevity in humans. Biogerontology 17, 421–429 (2016). https://doi.org/10.1007/s10522-015-9632-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-015-9632-6

Keywords

Navigation