Skip to main content

Advertisement

Log in

Elderly mouse skeletal muscle fibres have a diminished capacity to upregulate NCAM production in response to denervation

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Sarcopenia is a major contributor to the loss of independence and deteriorating quality of life in elderly individuals, it manifests as a decline in skeletal muscle mass and strength beyond the age of 65. Muscle fibre atrophy is a major contributor to sarcopenia and the most severely atrophic fibres are commonly found in elderly muscles to have permanently lost their motor nerve input. By contrast with elderly fibres, when fibres in young animals lose their motor input they normally mount a response to induce restoration of nerve contact, and this is mediated in part by upregulated expression of the nerve cell adhesion molecule (NCAM). Therefore, skeletal muscles appear to progressively lose their ability to become reinnervated, and here we have investigated whether this decline occurs via loss of the muscle’s ability to upregulate NCAM in response to denervation. We performed partial denervation (by peripheral nerve crush) of the extensor digitorum longus muscle of the lower limb in both young and elderly mice. We used immunohistochemistry to compare relative NCAM levels at denervated and control innervated muscle fibres, focused on measurements at neuromuscular junctional, extra-junctional and cytoplasmic locations. Muscle fibres in young animals responded to denervation with significant (32.9 %) increases in unpolysialylated NCAM at extra-junctional locations, but with no change in polysialylated NCAM. The same partial denervation protocol applied to elderly animals resulted in no significant change in either polysialylated or unpolysialylated NCAM at junctional, extra-junctional or cytoplasmic locations, therefore muscle fibres in young mice upregulated NCAM in response to denervation but fibres in elderly mice failed to do so. Elevation of NCAM levels is likely to be an important component of the muscle fibre’s ability to attract or reattract a neural input, so we conclude that the presence of increasing numbers of long-term denervated fibres in elderly muscles is due, at least in part, to the fibre’s declining ability to mount a normal response to loss of motor input.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abellan van Kan G (2009) Epidemiology and consequences of sarcopenia. J Nutr Health Aging 13:708–712

    Article  CAS  PubMed  Google Scholar 

  • Andersson A-M, Olsen M, Zhernosekov D, Gaardsvoll H, Krog L, Linnemann D, Bock E (1993) Age-related changes in expression of the neural cell adhesion molecule in skeletal muscle: a comparative study of newborn, adult and aged rats. Biochem J 290:641–648

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Angata K, Fukuda M (2003) Polysialyltransferases: major players in polysialic acid synthesis on the neural cell adhesion molecule. Biochimie 85:195–206

    Article  CAS  PubMed  Google Scholar 

  • Ballak SB, Degens H, de Haan A, Jaspers RT (2014) Aging related changes in determinants of muscle force generating capacity: a comparison of muscle aging in men and male rodents. Ageing Res Rev 14:43–55

    Article  PubMed  Google Scholar 

  • Brady J, Sheard PW (2015) Implementation of internal intensity controls for semi-quantitative immunohistochemistry. In: Proc NZ Microsc Soc, Dunedin

  • Breen L, Phillips SM (2011) Skeletal muscle protein metabolism in the elderly: interventions to counteract the ‘anabolic resistance’of ageing. Nutr Metab (Lond) 8:68

    Article  CAS  Google Scholar 

  • Brown M, Holland R, Hopkins W (1981) Motor nerve sprouting. Ann Rev Neur 4:17–42

    Article  CAS  Google Scholar 

  • Carlson BM, Faulkner JA (1989) Muscle transplantation between young and old rats: age of host determines recovery. Am J Physiol 256(C25):C1262–C1266

    CAS  PubMed  Google Scholar 

  • Chai RJ, Vukovic J, Dunlop S, Grounds MD, Shavlakadze T (2011) Striking denervation of neuromuscular junctions without lumbar motoneuron loss in geriatric mouse muscle. PLoS One 6:e28090

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Covault J, Sanes JR (1985) Neural cell adhesion molecule (N-CAM) accumulates in denervated and paralyzed skeletal muscles. Proc Natl Acad Sci 82:4544–4548

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Covault J, Sanes JR (1986) Distribution of N-CAM in synaptic and extrasynaptic portions of developing and adult skeletal muscle. J Cell Biol 102:716–730

    Article  CAS  PubMed  Google Scholar 

  • Covault J, Merlie JP, Goridis C, Sanes JR (1986) Molecular forms of N-CAM and its RNA in developing and denervated skeletal muscle. J Cell Biol 102:731–739

    Article  CAS  PubMed  Google Scholar 

  • DeChiara TM, Bowen DC, Valenzuela DM, Simmons MV, Poueymirou WT, Thomas S, Kinetz E, Compton DL, Rojas E, Park JS, Smith C, DiStefano PS, Glass DJ, Burden SJ, Yancopoulos GD (1996) The receptor tyrosine kinase MuSK is required for neuromuscular junction formation in vivo. Cell 85:501–512

    Article  CAS  PubMed  Google Scholar 

  • Deschenes M (2011) Motor unit and neuromuscular junction remodeling with aging. Curr Aging Sci 4:209–220

    Article  CAS  PubMed  Google Scholar 

  • Deschenes MR, Wilson MH (2003) Age-related differences in synaptic plasticity following muscle unloading. J Neurobiol 57:246–256

    Article  CAS  PubMed  Google Scholar 

  • Edelman G (1983) Cell adhesion molecules. Science 219:450–457

    Article  CAS  PubMed  Google Scholar 

  • Evans WJ, Lexell J (1995) Human aging, muscle mass, and fiber type composition. J Gerontol A 50:11–16

    Article  Google Scholar 

  • Ferraro E, Molinari F, Berghella L (2012) Molecular control of neuromuscular junction development. J Cachexia Sarc Musc 3:13–23

    Article  Google Scholar 

  • Gallo G, Letourneau PC (2004) Regulation of growth cone actin filaments by guidance cues. J Neurobiol 58:92–102

    Article  CAS  PubMed  Google Scholar 

  • Gautam M, Noakes PG, Moscoso L, Rupp F, Scheller RH, Merlie JP, Sanes JR (1996) Defective neuromuscular synaptogenesis in agrin-deficient mutant mice. Cell 85:525–535

    Article  CAS  PubMed  Google Scholar 

  • Grumet M, Rutishauser U, Edelman GM (1982) Neural cell adhesion molecule is on embryonic muscle cells and mediates adhesion to nerve cells in vitro. J Cell Biol 97:145–152

    Google Scholar 

  • Herbst R, Burden SJ (2000) The juxtamembrane region of MuSK has a critical role in agrin-mediated signaling. EMBO J 19:67–77

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hopkins W, Slack J (1981) The sequential development of nodal sprouts in mouse muscles in response to nerve degeneration. J Neurocytol 10:537–556

    Article  CAS  PubMed  Google Scholar 

  • Ide C (1996) Peripheral nerve regeneration. Neurosci Res 25:101–121

    Article  CAS  PubMed  Google Scholar 

  • Jamali AA, Afshar P, Abrams RA, Lieber RL (2002) Differential expression of neural cell adhesion molecule (NCAM) after tenotomy in rabbit skeletal muscle. J Orthopaed Res 20:364–369

    Article  CAS  Google Scholar 

  • Janssen I, Shepard DS, Katzmarzyk PT, Roubenoff R (2004) The healthcare costs of sarcopenia in the United States. J Am Geriatr Soc 52:80–85

    Article  PubMed  Google Scholar 

  • Kulakowski SA, Parker SD, Personius KE (2011) Reduced TrkB expression results in precocious age-like changes in neuromuscular structure, neurotransmission, and muscle function. J Appl Physiol 111:844–852

    Article  CAS  PubMed  Google Scholar 

  • Lexell J, Downham D (1991) The occurrence of fibre-type grouping in healthy human muscle: a quantitative study of cross-sections of whole vastus lateralis from men between 15 and 83 years. Acta Neuropath 81:377–381

    Article  CAS  PubMed  Google Scholar 

  • Lexell J, Downham D, Sjöström M (1986) Distribution of different fibre types in human skeletal muscles: fibre type arrangement in m. vastus lateralis from three groups of healthy men between 15 and 83 years. J Neurol Sci 72:211–222

    Article  CAS  PubMed  Google Scholar 

  • Lexell J, Taylor CC, Sjöström M (1988) What is the cause of the ageing atrophy?: total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15-to 83-year-old men. J Neurol Sci 84:275–294

    Article  CAS  PubMed  Google Scholar 

  • Lichtman JW, Sanes JR (2003) Watching the neuromuscular junction. J Neurocytol 32:767–775

    Article  CAS  PubMed  Google Scholar 

  • Martini R (1994) Expression and functional roles of neural cell surface molecules and extracellular matrix components during development and regeneration of peripheral nerves. J Neurocytol 23:1–28

    Article  CAS  PubMed  Google Scholar 

  • Matkowskyj KA, Cox R, Jensen RT, Benya RV (2003) Quantitative immunohistochemistry by measuring cumulative signal strength accurately measures receptor number. J Histochem Cytochem 51:205–214

    Article  CAS  PubMed  Google Scholar 

  • Matsumiya LC, Sorge RE, Sotocinal SG, Tabaka JM, Wieskopf JS, Zaloum A, King OD, Mogil JS (2012) Using the Mouse Grimace Scale to reevaluate the efficacy of postoperative analgesics in laboratory mice. J Am Assoc Lab Anim Sci 51:42–49

    PubMed Central  CAS  PubMed  Google Scholar 

  • McMahon CD, Shavlakadze T, Grounds MD (2011) Role of IGF-1 in age-related loss of skeletal muscle mass and function. In: Lynch GS (ed) Sarcopenia–age-related muscle wasting and weakness. Springer, Dordrecht, pp 393–418

  • Merlie J, Isenberg K, Russell S, Sanes J (1984) Denervation supersensitivity in skeletal muscle: analysis with a cloned cDNA probe. J Cell Biol 99:332–335

    Article  CAS  PubMed  Google Scholar 

  • Mitchell WK, Williams J, Atherton P, Larvin M, Lund J, Narici M (2012) Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review. Front Physiol 3:260. doi:10.3389/fphys.2012.00260

    Article  PubMed Central  PubMed  Google Scholar 

  • Olsen M, Krog L, Edvardsen K, Skovgaard LT, Bock E (1993) Intact transmembrane isoforms of the neural cell adhesion molecule are released from the plasma membrane. Biochem J 295:833–840

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Panicker AK, Buhusi M, Thelen K, Maness PF (2003) Cellular signalling mechanisms of neural cell adhesion molecules. Front Biosci 8:d900–d911

    Article  CAS  PubMed  Google Scholar 

  • Pestronk A, Drachman DB, Griffin JW (1980) Effects of aging on nerve sprouting and regeneration. Exp Neurol 70:65–82

    Article  CAS  PubMed  Google Scholar 

  • Piétri-Rouxel F et al (2009) DHPR α1S subunit controls skeletal muscle mass and morphogenesis. EMBO J 29:643–654

    Article  PubMed Central  PubMed  Google Scholar 

  • Rønn LCB, Berezin V, Bock E (2000) The neural cell adhesion molecule in synaptic plasticity and ageing. Int J Dev Neurosci 18:193–199

    Article  PubMed  Google Scholar 

  • Rowan SL, Rygiel K, Purves-Smith FM, Solbak NM, Turnbull DM, Hepple RT (2012) Denervation causes fiber atrophy and myosin heavy chain co-expression in senescent skeletal muscle. PLoS One 7:e29082

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rutishauser U (1985) Influences of the neural cell adhesion molecule on axon growth and guidance. J Neurosci Res 13:123–131

    Article  CAS  PubMed  Google Scholar 

  • Sanes JR, Yamagata M (2009) Many paths to synaptic specificity. Ann Rev Cell Dev Biol 25:161–195

    Article  CAS  Google Scholar 

  • Secher T (2010) Soluble NCAM In: Berezin V (ed) Structure and function of the neural cell adhesion molecule NCAM. Springer, New York, pp 227–242

  • Sheard PW, Anderson RD (2012) Age-related loss of muscle fibres is highly variable amongst mouse skeletal muscles. Biogerontology 13:157–167

    Article  CAS  PubMed  Google Scholar 

  • Tam S, Gordon T (2003) Mechanisms controlling axonal sprouting at the neuromuscular junction. J Neurocytol 32:961–974

    Article  CAS  PubMed  Google Scholar 

  • Valdez G, Tapia JC, Kang H, Clemenson GD, Gage F, Lichtman JW, Sanes JR (2010) Attenuation of age-related changes in mouse neuromuscular synapses by caloric restriction and exercise. Proc Nat Acad Sci USA 107:14863–14868

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vaughan DW (1992) Effects of advancing age on peripheral nerve regeneration. J Comp Neurol 323:219–237

    Article  CAS  PubMed  Google Scholar 

  • Verdú E, Ceballos D, Vilches JJ, Navarro X (2000) Influence of aging on peripheral nerve function and regeneration. J Periph Nerv Sys 5:191–208

    Article  Google Scholar 

  • Viguie CA, Lu D-X, Huang S-K, Rengen H, Carlson BM (1997) Quantitative study of the effects of long-term denervation on the extensor digitorum longus muscle of the rat. Anat Rec 248:346–354

    Article  CAS  PubMed  Google Scholar 

  • Walsh FS, Doherty P (1991) Structure and function of the gene for neural cell adhesion molecule. Seminars in neuroscience 4:271–284

    Article  Google Scholar 

  • Walsh FS, Hobbs C, Wells DJ, Slater CR, Fazeli S (2000) Ectopic expression of NCAM in skeletal muscle of transgenic mice results in terminal sprouting at the neuromuscular junction and altered structure but not function. Mol Cell Neurosci 15:244–261

    Article  CAS  PubMed  Google Scholar 

  • Yumoto N, Kim N, Burden SJ (2012) Lrp4 is a retrograde signal for presynaptic differentiation at neuromuscular synapses. Nature 489:438–442

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Department of Physiology at the University of Otago. AG was the recipient of a Department of Physiology Master’s Scholarship and Postgraduate Publishing Bursary. We thank Dr Jon Cornwall, Navneet Lal, Kathrine Nielsen and Johnranin Brady for their thoughtful contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Sheard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gillon, A., Sheard, P. Elderly mouse skeletal muscle fibres have a diminished capacity to upregulate NCAM production in response to denervation. Biogerontology 16, 811–823 (2015). https://doi.org/10.1007/s10522-015-9608-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-015-9608-6

Keywords

Navigation