Skip to main content

Advertisement

Log in

Mitochondria in health, aging and diseases: the epigenetic perspective

  • Review Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

The rate/quality of human aging and the development/progression of diseases depend on a complex interplay among genetics, epigenetics and environment. In this scenario, mitochondrial function (or dysfunction) and mitochondrial DNA have emerged as major players. This is mainly due to their crucial role in energetic balance, in modulating epigenetic programs and in influencing cell stress response. Moreover, it is also emerging the existence of epigenetic changes in mitochondrial DNA and of non coding mitochondrial RNAs which, together with the nuclear ones, play regulatory roles in numerous human phenotypes. In this review we will provide an overview on “mitochondrial epigenetics” state of the art, by summarizing the involvement of mitochondrial function and of mitochondria–nucleus communication in regulating nuclear epigenome, as well as the key aspects of the epigenetic marks related to mitochondrial DNA. Despite the limited data available in the literature to date, mainly due to the novelty of the topic, the intriguing interplay of the mitochondrial epigenetic changes in both physiological and pathological conditions will also be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Amodio N, Leotta M, Bellizzi D, Di Martino MT, D’Aquila P, Lionetti M, Fabiani F, Leone E, Gullà AM, Passarino G, Caraglia M, Negrini M, Neri A, Giordano A, Tagliaferri P, Tassone P (2012) DNA-demethylating and anti-tumor activity of synthetic miR-29b mimics in multiple myeloma. Oncotarget 3:1246–1258

    Article  PubMed Central  PubMed  Google Scholar 

  • Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465

    Article  CAS  PubMed  Google Scholar 

  • Anier K, Malinovskaja K, Aonurm-Helm A, Zharkovsky A, Kalda A (2010) DNA methylation regulates cocaine-induced behavioral sensitization in mice. Neuropsychopharmacology 35:2450–2461

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Aschrafi A, Schwechter AD, Mameza MG, Natera-Naranjo O, Gioio AE, Kaplan BB (2008) MicroRNA-338 regulates local cytochrome c oxidase IV mRNA levels and oxidative phosphorylation in the axons of sympathetic neurons. J Neurosci 28:12581–12590

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Avila MA, Corrales FJ, Ruiz F, Sánchez-Góngora E, Mingorance J, Carretero MV, Mato IM (1998) Specific interaction of methionine adenosyltransferase with free radicals. Biofactors 8:27–32

    Article  CAS  PubMed  Google Scholar 

  • Bai RK, Chang J, Yeh KT, Lou MA, Lu JF, Tan DJ, Liu H, Wong LJ (2011) Mitochondrial DNA content varies with pathological characteristics of breast cancer. J Oncol. doi:10.1155/2011/496189

    PubMed Central  PubMed  Google Scholar 

  • Bandiera S, Matégot R, Girard M, Demongeot J, Henrion-Caude A (2013) MitomiRs delineating the intracellular localization of microRNAs at mitochondria. Free Radic Biol Med 64:12–19

    Article  CAS  PubMed  Google Scholar 

  • Barrès R, Osler ME, Yan J, Rune A, Fritz T, Caidahl K, Krook A, Zierath JR (2009) Non-CpG methylation of the PGC-1alpha promoter through DNMT3B controls mitochondrial density. Cell Metab 10:189–198

    Article  PubMed  CAS  Google Scholar 

  • Barrès R, Yan J, Egan B, Treebak JT, Rasmussen M, Fritz T, Caidahl K, Krook A, O′Gorman DJ, Zierath JR (2012) Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metab 15:405–411

    Article  PubMed  CAS  Google Scholar 

  • Barrey E, Saint-Auret G, Bonnamy B, Damas D, Boyer O, Gidrol X (2011) Pre-microRNA and mature microRNA in human mitochondria. PLoS ONE 6:e20220

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baudouin SV, Saunders D, Tiangyou W, Elson JL, Poynter J, Pyle A, Keers S, Turnbull DM, Howell N, Chinnery PF (2005) Mitochondrial DNA and survival after sepsis: a prospective study. Lancet 366:2118–2121

  • Bellizzi D, Cavalcante P, Taverna D, Rose G, Passarino G, Salvioli S, Franceschi C, De Benedictis G (2006) Gene expression of cytokines and cytokine receptors is modulated by the common variability of the mitochondrial DNA in cybrid cell lines. Genes Cells 11:883–891

    Article  CAS  PubMed  Google Scholar 

  • Bellizzi D, Taverna D, D’Aquila P, De Blasi S, De Benedictis G (2009) Mitochondrial DNA variability modulates mRNA and intra-mitochondrial protein levels of HSP60 and HSP75: experimental evidence from cybrid lines. Cell Stress Chaperones 14:265–271

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bellizzi D, D’Aquila P, Giordano M, Montesanto A, Passarino G (2012) Global DNA methylation levels are modulated by mitochondrial DNA variants. Epigenomics 4:17–27

    Article  CAS  PubMed  Google Scholar 

  • Bellizzi D, D’Aquila P, Scafone T, Giordano M, Riso V, Riccio A, Passarino G (2013) The control region of mitochondrial DNA shows an unusual CpG and non-CpG methylation pattern. DNA Res 20:537–547

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bian Z, Li LM, Tang R, Hou DX, Chen X, Zhang CY, Zen K (2010) Identification of mouse liver mitochondria-associated miRNAs and their potential biological functions. Cell Res 20:1076–1078

    Article  PubMed  Google Scholar 

  • Biswas G, Anandatheerthavarada HK, Zaidi M, Avadhani NG (2003) Mitochondria to nucleus stress signaling: a distinctive mechanism of NFkappaB/Rel activation through calcineurin-mediated inactivation of IkappaBbeta. J Cell Biol 161:507–519

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Biswas G, Guha M, Avadhani NG (2005) Mitochondria-to-nucleus stress signaling in mammalian cells: nature of nuclear gene targets, transcription regulation, and induced resistance to apoptosis. Gene 354:132–139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bogenhagen DF, Rousseau D, Burke S (2008) The layered structure of human mitochondrial DNA nucleoids. J Biol Chem 283:3665–3675

    Article  CAS  PubMed  Google Scholar 

  • Bonawitz ND, Clayton DA, Shadel GS (2006) Initiation and beyond: multiple functions of the human mitochondrial transcription machinery. Mol Cell 24:813–825

    Article  CAS  PubMed  Google Scholar 

  • Braconi C, Huang N, Patel T (2010) MicroRNA-dependent regulation of DNA methyltransferase-1 and tumor suppressor gene expression by interleukin-6 in human malignant cholangiocytes. Hepatology 51:881–890

    PubMed Central  CAS  PubMed  Google Scholar 

  • Butow RA, Avadhani NG (2004) Mitochondrial signaling: the retrograde response. Mol Cell 14:1–15

    Article  CAS  PubMed  Google Scholar 

  • Byun HM, Panni T, Motta V, Hou L, Nordio F, Apostoli P, Bertazzi PA, Baccarelli AA (2013) Effects of airborne pollutants on mitochondrial DNA methylation. Part Fibre Toxicol 10:18

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Carrer M, Liu N, Grueter CE, Williams AH, Frisard MI, Hulver MW, Bassel-Duby R, Olson EN (2012) Control of mitochondrial metabolism and systemic energy homeostasis by microRNAs 378 and 378*. Proc Natl Acad Sci U S A 109:15330–15335

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chalkiadaki A, Guarente L (2012) Sirtuins mediate mammalian metabolic responses to nutrient availability. Nat Rev Endocrinol. 8:287–296

    Article  CAS  PubMed  Google Scholar 

  • Chen XJ, Butow RA (2005) The organization and inheritance of the mitochondrial genome. Nat Rev Genet 6:815–825

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Li Y, Zhang H, Huang P, Luthra R (2010) Hypoxia-regulated microRNA-210 modulates mitochondrial function and decreases ISCU and COX10 expression. Oncogene 29:4362–4368

    Article  CAS  PubMed  Google Scholar 

  • Chen A, Raule N, Chomyn A, Attardi G (2012a) Decreased reactive oxygen species production in cells with mitochondrial haplogroups associated with longevity. PLoS ONE 7:e46473

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen H, Dzitoyeva S, Manev H (2012b) Effect of aging on 5-hydroxymethylcytosine in the mouse hippocampus. Restor Neurol Neurosci 30:237–245

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chen H, Dzitoyeva S, Manev H (2012c) Effect of valproic acid on mitochondrial epigenetics. Eur J Pharmacol 690:51–59

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chestnut BA, Chang Q, Price A, Lesuisse C, Wong M, Martin LJ (2011) Epigenetic regulation of motor neuron cell death through DNA methylation. J Neurosci 31:16619–16636

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Choi YS, Hoon Jeong J, Min HK, Jung HJ, Hwang D, Lee SW, Kim Pak Y (2011) Shot-gun proteomic analysis of mitochondrial D-loop DNA binding proteins: identification of mitochondrial histones. Mol BioSyst 7:1523–1536

    Article  CAS  PubMed  Google Scholar 

  • Clayton DA (2000) Vertebrate mitochondrial DNA-a circle of surprises. Exp Cell Res 255:4–9

    Article  CAS  PubMed  Google Scholar 

  • Coskun P, Wyrembak J, Schriner SE, Chen HW, Marciniack C, Laferla F, Wallace DC (2012) A mitochondrial etiology of Alzheimer and Parkinson disease. Biochim Biophys Acta 1820:553–564

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Craciunescu CN, Johnson AR, Zeisel SH (2010) Dietary choline reverses some, but not all, effects of folate deficiency on neurogenesis and apoptosis in fetal mouse brain. J Nutr 140:1162–1166

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cummings DJ, Tait A, Goddard JM (1974) Methylated bases in DNA from Paramecium aurelia. Biochim Biophys Acta 374:1–11

    Article  CAS  PubMed  Google Scholar 

  • Curgy JJ (1985) The mitoribosomes. Biol Cell 54:1–38

    Article  CAS  PubMed  Google Scholar 

  • Cyr AR, Domann FE (2011) The redox basis of epigenetic modifications: from mechanisms to functional consequences. Antioxid Redox Signal 15:551–589

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Darvishi K, Sharma S, Bhat AK, Rai E, Bamezai RN (2007) Mitochondrial DNA G10398A polymorphism imparts maternal haplogroup N a risk for breast and esophageal cancer. Cancer Lett 249:249–255

    Article  CAS  PubMed  Google Scholar 

  • Dato S, Passarino G, Rose G, Altomare K, Bellizzi D, Mari V, Feraco E, Franceschi C, De Benedictis G (2004) Association of the mitochondrial DNA haplogroup J with longevity is population specific. Eur J Hum Genet 12:1080–1082

    Article  CAS  PubMed  Google Scholar 

  • Dawid IB (1974) 5-methylcytidylic acid: absence from mitochondrial DNA of frogs and HeLa cells. Science 184:80–81

    Article  CAS  PubMed  Google Scholar 

  • De Benedictis G, Rose G, Carrieri G, De Luca M, Falcone E, Passarino G, Bonafe M, Monti D, Baggio G, Bertolini S, Mari D, Mattace R, Franceschi C (1999) Mitochondrial DNA inherited variants are associated with successful aging and longevity in humans. FASEB J 13:1532–1536

    PubMed  Google Scholar 

  • Delage B, Dashwood RH (2008) Dietary manipulation of histone structure and function. Annu Rev Nutr 28:347–366

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dietrich JB, Poirier R, Aunis D, Zwiller J (2004) Cocaine downregulates the expression of the mitochondrial genome in rat brain. Ann N Y Acad Sci 1025:345–350

    Article  CAS  PubMed  Google Scholar 

  • Donohoe DR, Bultman SJ (2012) Metaboloepigenetics: interrelationships between energy metabolism and epigenetic control of gene expression. J Cell Physiol 227:3169–3177

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dowling DK (2014) Evolutionary perspectives on the links between mitochondrial genotype and disease phenotype. Biochim Biophys Acta 1840:1393–1403

    Article  CAS  PubMed  Google Scholar 

  • Duarte FV, Palmeira CM, Rolo AP (2014) The Role of microRNAs in mitochondria: small players acting wide. Genes (Basel) 5:865–886

    Google Scholar 

  • Duursma AM, Kedde M, Schrier M, le Sage C, Agami R (2008) miR-148 targets human DNMT3b protein coding region. RNA 14:872–877

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dzitoyeva S, Chen H, Manev H (2012) Effect of aging on 5-hydroxymethylcytosine in brain mitochondria. Neurobiol Aging 33:2881–2891

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Elson JL, Andrews RM, Chinnery PF, Lightowlers RN, Turnbull DM, Howell N (2001) Analysis of European mtDNAs for recombination. Am J Hum Genet 68:145–153

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fabbri M, Calin GA (2010) Epigenetics and miRNAs in human cancer. Adv Genet 70:87–99

    Article  CAS  PubMed  Google Scholar 

  • Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E, Liu S, Alder H, Costinean S, Fernandez-Cymering C, Volinia S, Guler G, Morrison CD, Chan KK, Marcucci G, Calin GA, Huebner K, Croce CM (2007) MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci U S A 104:15805–15810

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fang MZ, Jin Z, Wang Y, Liao J, Yang GY, Wang LD, Yang CS (2005) Promoter hypermethylation and inactivation of O(6)-methylguanine-DNA methyltransferase in esophageal squamous cell carcinomas and its reactivation in cell lines. Int J Oncol 26:615–622

    CAS  PubMed  Google Scholar 

  • Fang M, Chen D, Yang CS (2007) Dietary polyphenols may affect DNA methylation. J Nutr 137:223S–228S

    CAS  PubMed  Google Scholar 

  • Feil R, Fraga MF (2012) Epigenetics and the environment: emerging patterns and implications. Nat Rev Genet 13:97–109

    CAS  PubMed  Google Scholar 

  • Feng S, Xiong L, Ji Z, Cheng W, Yang H (2012) Correlation between increased ND2 expression and demethylated displacement loop of mtDNA in colorectal cancer. Mol Med Rep 6:125–130

    CAS  PubMed  Google Scholar 

  • Feng YM, Jia YF, Su LY, Wang D, Lv L, Xu L, Yao YG (2013) Decreased mitochondrial DNA copy number in the hippocampus and peripheral blood during opiate addiction is mediated by autophagy and can be salvaged by melatonin. Autophagy 9:1395–1406

  • Garesse R, Vallejo CG (2001) Animal mitochondrial biogenesis and function: a regulatory cross-talk between two genomes. Gene 263:1–16

    Article  CAS  PubMed  Google Scholar 

  • Garzon R, Liu S, Fabbri M, Liu Z, Heaphy CE, Callegari E, Schwind S, Pang J, Yu J, Muthusamy N, Havelange V, Volinia S, Blum W, Rush LJ, Perrotti D, Andreeff M, Bloomfield CD, Byrd JC, Chan K, Wu LC, Croce CM, Marcucci G (2009) MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood 113:6411–6418

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ghezzi D, Marelli C, Achilli A, Goldwurm S, Pezzoli G, Barone P, Pellecchia MT, Stanzione P, Brusa L, Bentivoglio AR, Bonuccelli U, Petrozzi L, Abbruzzese G, Marchese R, Cortelli P, Grimaldi D, Martinelli P, Ferrarese C, Garavaglia B, Sangiorgi S, Carelli V, Torroni A, Albanese A, Zeviani M (2005) Mitochondrial DNA haplogroup K is associated with a lower risk of Parkinson’s disease in Italians. Eur J Hum Genet 13:748–752

    Article  CAS  PubMed  Google Scholar 

  • Ghosh S, Sengupta S, Scaria V (2014) Comparative analysis of human mitochondrial methylomes shows distinct patterns of epigenetic regulation in mitochondria. Mitochondrion 18:58–62

    Article  CAS  PubMed  Google Scholar 

  • Gilkerson R, Bravo L, Garcia I, Gaytan N, Herrera A, Maldonado A, Quintanilla B (2013) The mitochondrial nucleoid: integrating mitochondrial DNA into cellular homeostasis. Cold Spring Harb Perspect Biol 5:a011080

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gokul G, Gautami B, Malathi S, Sowjanya AP, Poli UR, Jain M, Ramakrishna G, Khosla S (2007) DNA methylation profile at the DNMT3L promoter: a potential biomarker for cervical cancer. Epigenetics 2:80–85

    Article  PubMed Central  PubMed  Google Scholar 

  • Groot GS, Kroon AM (1979) Mitochondrial DNA from various organisms does not contain internally methylated cytosine in -CCGG- sequences. Biochim Biophys Acta 564:355–357

    Article  CAS  PubMed  Google Scholar 

  • Guha M, Avadhani NG (2013) Mitochondrial retrograde signaling at the crossroads of tumor bioenergetics, genetics and epigenetics. Mitochondrion 13:577–591

    Article  CAS  PubMed  Google Scholar 

  • Guha M, Fang JK, Monks R, Birnbaum MJ, Avadhani NG (2010) Activation of Akt is essential for the propagation of mitochondrial respiratory stress signaling and activation of the transcriptional coactivator heterogeneous ribonucleoprotein A2. Mol Biol Cell 21:3578–3589

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guo JU, Su Y, Zhong C, Ming GL, Song H (2011) Emerging roles of TET proteins and 5-hydroxymethylcytosines in active DNA demethylation and beyond. Cell Cycle 10:2662–2668

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hao XD, Yang YL, Tang NL, Kong QP, Wu SF, Zhang YP (2013) Mitochondrial DNA haplogroup Y is associated to Leigh syndrome in Chinese population. Gene 512:460–463

    Article  CAS  PubMed  Google Scholar 

  • Hitchler MJ, Domann FE (2007) An epigenetic perspective on the free radical theory of development. Free Radic Biol Med 43:1023–1036

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hitchler MJ, Domann FE (2012) Redox regulation of the epigenetic landscape in cancer: a role for metabolic reprogramming in remodeling the epigenome. Free Radic Biol Med 53:2178–2187

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hong EE, Okitsu CY, Smith AD, Hsieh CL (2013) Regionally specific and genome-wide analyses conclusively demonstrate the absence of CpG methylation in human mitochondrial DNA. Mol Cell Biol 33:2683–2690

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hsieh CL (1999) In vivo activity of murine de novo methyltransferases, Dnmt3a and Dnmt3b. Mol Cell Biol 19:8211–8218

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang J, Wang Y, Guo Y, Sun S (2010) Down-regulated microRNA-152 induces aberrant DNA methylation in hepatitis B virus-related hepatocellular carcinoma by targeting DNA methyltransferase 1. Hepatology 52:60–70

    Article  CAS  PubMed  Google Scholar 

  • Hudson G, Gomez-Duran A, Wilson IJ, Chinnery PF (2014) Recent mitochondrial DNA mutations increase the risk of developing common late-onset human diseases. PLoS Genet 10:e1004369

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Iacobazzi V, Castegna A, Infantino V, Andria G (2013) Mitochondrial DNA methylation as a next-generation biomarker and diagnostic tool. Mol Genet Metab 110:25–34

    Article  CAS  PubMed  Google Scholar 

  • Infantino V, Castegna A, Iacobazzi F, Spera I, Scala I, Andria G, Iacobazzi V (2011) Impairment of methyl cycle affects mitochondrial methyl availability and glutathione level in Down’s syndrome. Mol Genet Metab 102:378–382

    Article  CAS  PubMed  Google Scholar 

  • James AM, Collins Y, Logan A, Murphy MP (2012) Mitochondrial oxidative stress and the metabolic syndrome. Trends Endocrinol Metab 23:429–434

    Article  CAS  PubMed  Google Scholar 

  • Jazwinski SM (1999) Molecular mechanisms of yeast longevity. Trends Microbiol 7:247–252

    Article  CAS  PubMed  Google Scholar 

  • Jazwinski SM (2013) The retrograde response: when mitochondrial quality control is not enough. Biochim Biophys Acta 1833:400–409

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080

    Article  CAS  PubMed  Google Scholar 

  • Jia D, Jurkowska RZ, Zhang X, Jeltsch A, Cheng X (2007) Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature 449:248–251

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jiménez-Chillarón JC, Díaz R, Martínez D, Pentinat T, Ramón-Krauel M, Ribó S, Plösch T (2012) The role of nutrition on epigenetic modifications and their implications on health. Biochimie 94:2242–2263

    Article  PubMed  CAS  Google Scholar 

  • Jin SG, Wu X, Li AX, Pfeifer GP (2011) Genomic mapping of 5-hydroxymethylcytosine in the human brain. Nucleic Acids Res 39:5015–5024

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Johnson KR, Zheng QY, Bykhovskaya Y, Spirina O, Fischel-Ghodsian N (2001) A nuclear-mitochondrial DNA interaction affecting hearing impairment in mice. Nat Genet 27:191–194

  • Kadiyala CS, Zheng L, Du Y, Yohannes E, Kao HY, Miyagi M, Kern TS (2012) Acetylation of retinal histones in diabetes increases inflammatory proteins: effects of minocycline and manipulation of histone acetyltransferase (HAT) and histone deacetylase (HDAC). J Biol Chem 287:25869–25880

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kasashima K, Sumitani M, Satoh M, Endo H (2008) Human prohibitin 1 maintains the organization and stability of the mitochondrial nucleoids. Exp Cell Res 314:988–996

    Article  CAS  PubMed  Google Scholar 

  • Kaur P, Shorey LE, Ho E, Dashwood RH, Williams DE (2013) The epigenome as a potential mediator of cancer and disease prevention in prenatal development. Nutr Rev 71:441–457

    Article  PubMed Central  PubMed  Google Scholar 

  • Kenney CM, Chwa M, Atilano SR, Falatoonzadeh P, Ramirez C, Malik D, Tarek M, Cáceres-del-Carpio J, Nesburn AB, Boyer DS, Kuppermann BD, Vawter M, Jazwinski SM, Miceli M, Wallace DC, Udar N (2014) Inherited mitochondrial DNA variants can affect complement, inflammation and apoptosis pathways: insights into mitochondrial-nuclear interactions. Hum Mol Genet 23:3537–3551

    Article  PubMed  CAS  Google Scholar 

  • Khusnutdinova E, Gilyazova I, Ruiz-Pesini E, Derbeneva O, Khusainova R, Khidiyatova I, Magzhanov R, Wallace DC (2008) A mitochondrial etiology of neurodegenerative diseases: evidence from Parkinson’s disease. Ann N Y Acad Sci 1147:1–20

  • Kobayashi H, Sakurai T, Imai M, Takahashi N, Fukuda A, Yayoi O, Sato S, Nakabayashi K, Hata K, Sotomaru Y, Suzuki Y, Kono T (2012) Contribution of intragenic DNA methylation in mouse gametic DNA methylomes to establish oocyte-specific heritable marks. PLoS Genet 8:e1002440

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kotiadis VN, Duchen MR, Osellame LD (2014) Mitochondrial quality control and communications with the nucleus are important in maintaining mitochondrial function and cell health. Biochim Biophys Acta 1840:1254–1265

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kraytsberg Y, Schwartz M, Brown TA, Ebralidse K, Kunz WS, Clayton DA, Vissing J, Khrapko K (2004) Recombination of human mitochondrial DNA. Science 304:981

    Article  CAS  PubMed  Google Scholar 

  • Kren BT, Wong PY, Sarver A, Zhang X, Zeng Y, Steer CJ (2009) MicroRNAs identified in highly purified liver-derived mitochondria may play a role in apoptosis. RNA Biol 6:65–72

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kriaucionis S, Heintz N (2009) The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324:929–930

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kudriashova IB, Kirnos MD, Vaniushin BF (1976) DNA-methylase activities from animal mitochondria and nuclei: different specificity of DNA methylation. Biokhimiia 41(11):1968–1977

    CAS  PubMed  Google Scholar 

  • Kukat C, Larsson NG (2013) mtDNA makes a U-turn for the mitochondrial nucleoid. Trends Cell Biol 23:457–463

    Article  CAS  PubMed  Google Scholar 

  • Kukat C, Wurm CA, Spåhr H, Falkenberg M, Larsson NG, Jakobs S (2011) Super-resolution microscopy reveals that mammalian mitochondrial nucleoids have a uniform size and frequently contain a single copy of mtDNA. Proc Natl Acad Sci U S A 108:13534–13539

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kulawiak B, Höpker J, Gebert M, Guiard B, Wiedemann N, Gebert N (2013) mitochondrial protein import machinery has multiple connections to the respiratory chain. Biochim Biophys Acta 1827:612–626

    Article  CAS  PubMed  Google Scholar 

  • Kutsyi MP, Gouliaeva NA, Kuznetsova EA, Gaziev AI (2005) DNA-binding proteins of mammalian mitochondria. Mitochondrion 5:35–44

    Article  CAS  PubMed  Google Scholar 

  • Ladoukakis ED, Eyre-Walker A (2004) Evolutionary genetics: direct evidence of recombination in human mitochondrial DNA. Heredity 93:321

    Article  CAS  PubMed  Google Scholar 

  • Landerer E, Villegas J, Burzio VA, Oliveira L, Villota C, Lopez C, Restovic F, Martinez R, Castillo O, Burzio LO (2011) Nuclear localization of the mitochondrial ncRNAs in normal and cancer cells. Cell Oncol (Dordr) 34:297–305

    Article  CAS  Google Scholar 

  • LaPlant Q, Vialou V, Covington HE 3rd, Dumitriu D, Feng J, Warren BL, Maze I, Dietz DM, Watts EL, Iñiguez SD, Koo JW, Mouzon E, Renthal W, Hollis F, Wang H, Noonan MA, Ren Y, Eisch AJ, Bolaños CA, Kabbaj M, Xiao G, Neve RL, Hurd YL, Oosting RS, Fan G, Morrison JH, Nestler EJ (2010) Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens. Nat Neurosci 13:1137–1143

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee HC, Wei YH (2012) Mitochondria and aging. Adv Exp Med Biol 942:311–327

    Article  CAS  PubMed  Google Scholar 

  • Lee WJ, Shim JY, Zhu BT (2005) Mechanisms for the inhibition of DNA methyltransferases by tea catechins and bioflavonoids. Mol Pharmacol 68:1018–1030

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Tollefsbol TO (2010) Impact on DNA methylation in cancer prevention and therapy by bioactive dietary components. Curr Med Chem 17:2141–2151

    Article  PubMed Central  PubMed  Google Scholar 

  • Li P, Jiao J, Gao G, Prabhakar BS (2012) Control of mitochondrial activity by miRNAs. J Cell Biochem 113:1104–1110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liao LM, Baccarelli A, Shu XO, Gao YT, Ji BT, Yang G, Li HL, Hoxha M, Dioni L, Rothman N, Zheng W, Chow WH (2011) Mitochondrial DNA copy number and risk of gastric cancer: a report from the Shanghai Women’s Health Study. Cancer Epidemiol Biomark Prev 20:1944–1949

    Article  CAS  Google Scholar 

  • Lillycrop KA, Burdge GC (2012) Epigenetic mechanisms linking early nutrition to long term health. Best Pract Res Clin Endocrinol Metab 26:667–676

    Article  PubMed  Google Scholar 

  • Lillycrop KA, Burdge GC (2014) Breast cancer and the importance of early life nutrition. Cancer Treat Res 159:269–285

    Article  CAS  PubMed  Google Scholar 

  • Liou CW, Chen JB, Tiao MM, Weng SW, Huang TL, Chuang JH, Chen SD, Chuang YC, Lee WC, Lin TK, Wang PW (2012) Mitochondrial DNA coding and control region variants as genetic risk factors for type 2 diabetes. Diabetes 61:2642–2651

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu Z, Butow RA (2006) Mitochondrial retrograde signaling. Annu Rev Genet 40:159–185

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Xie Z, Jones W, Pavlovicz RE, Liu S, Yu J, Li PK, Lin J, Fuchs JR, Marcucci G, Li C, Chan KK (2009) Curcumin is a potent DNA hypomethylation agent. Bioorgan Med Chem Lett 19:706–709

    Article  CAS  Google Scholar 

  • Lu J, Qian Y, Li Z, Yang A, Zhu Y, Li R, Yang L, Tang X, Chen B, Ding Y, Li Y, You J, Zheng J, Tao Z, Zhao F, Wang J, Sun D, Zhao J, Meng Y, Guan MX (2010) Mitochondrial haplotypes may modulate the phenotypic manifestation of the deafness-associated 12S rRNA 1555A > G mutation. Mitochondrion 10:69–81

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389:251–260

    Article  CAS  PubMed  Google Scholar 

  • Lung B, Zemann A, Madej MJ, Schuelke M, Techritz S, Ruf S, Bock R, Hüttenhofer A (2006) Identification of small non-coding RNAs from mitochondria and chloroplasts. Nucleic Acids Res 34:3842–50382

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lupu DS, Tint D, Niculescu MD (2012) Perinatal epigenetic determinants of cognitive and metabolic disorders. Aging Dis. 3:444–453

    PubMed Central  PubMed  Google Scholar 

  • Maekawa M, Taniguchi T, Higashi H, Sugimura H, Sugano K, Kanno T (2004) Methylation of mitochondrial DNA is not a useful marker for cancer detection. Clin Chem 50:1480–1481

    Article  CAS  PubMed  Google Scholar 

  • Manev H, Dzitoyeva S (2013) Progress in mitochondrial epigenetics. Biomol Concepts 4:381–389

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Pastor B, Cosentino C, Mostoslavsky R (2013) A tale of metabolites: the cross-talk between chromatin and energy metabolism. Cancer Discov 3:497–501

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maruszak A, Canter JA, Styczyńska M, Zekanowski C, Barcikowska M (2009) Mitochondrial haplogroup H and Alzheimer’s disease–is there a connection? Neurobiol Aging 30:1749–1755

    Article  CAS  PubMed  Google Scholar 

  • McCulloch V, Seidel-Rogol BL, Shadel GS (2002) A human mitochondrial transcription factor is related to RNA adenine methyltransferases and binds S-adenosylmethionine. Mol Cell Biol 22:1116–1125

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mehedint MG, Craciunescu CN, Zeisel SH (2010) Maternal dietary choline deficiency alters angiogenesis in fetal mouse hippocampus. Proc Natl Acad Sci U S A. 107:12834–12839

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Metodiev MD, Lesko N, Park CB, Cámara Y, Shi Y, Wibom R, Hultenby K, Gustafsson CM, Larsson NG (2009) Methylation of 12S rRNA is necessary for in vivo stability of the small subunit of the mammalian mitochondrial ribosome. Cell Metab 9:386–397

    Article  CAS  PubMed  Google Scholar 

  • Minami K, Chano T, Kawakami T, Ushida H, Kushima R, Okabe H, Okada Y, Okamoto K (2010) DNMT3L is a novel marker and is essential for the growth of human embryonal carcinoma. Clin Cancer Res 16:2751–2910

    Article  CAS  PubMed  Google Scholar 

  • Mirza S, Sharma G, Parshad R, Gupta SD, Pandya P, Ralhan R (2013) Expression of DNA methyltransferases in breast cancer patients and to analyze the effect of natural compounds on DNA methyltransferases and associated proteins. J Breast Cancer 16:23–31

    Article  PubMed Central  PubMed  Google Scholar 

  • Mishmar D, Ruiz-Pesini E, Golik P, Macaulay V, Clark AG, Hosseini S, Brandon M, Easley K, Chen E, Brown MD, Sukernik RI, Olckers A, Wallace DC (2003) Natural selection shaped regional mtDNA variation in humans. Proc Natl Acad Sci U S A 100:171–176

  • Münzel M, Globisch D, Brückl T, Wagner M, Welzmiller V, Michalakis S, Müller M, Biel M, Carell T (2010) Quantification of the sixth DNA base hydroxymethylcytosine in the brain. Angew Chem Int Ed Engl 49:5375–5377

    Article  PubMed  CAS  Google Scholar 

  • Nass MM (1973) Differential methylation of mitochondrial and nuclear DNA in cultured mouse, hamster and virus-transformed hamster cells.In vivo and in vitro methylation. J Mol Biol 80:155–175

    Article  CAS  PubMed  Google Scholar 

  • Newsholme P, Gaudel C, Krause M (2012) Mitochondria and diabetes. an intriguing pathogenetic role. Adv Exp Med Biol 942:235–247

    Article  CAS  PubMed  Google Scholar 

  • Nian H, Delage B, Ho E, Dashwood RH (2009) Modulation of histone deacetylase activity by dietary isothiocyanates and allyl sulfides: studies with sulforaphane and garlic organosulfur compounds. Environ Mol Mutagen 50:213–221

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Niemi AK, Hervonen A, Hurme M, Karhunen PJ, Jylhä M, Majamaa K (2003) Mitochondrial DNA polymorphisms associated with longevity in a Finnish population. Hum Genet 112:29–33

    Article  CAS  PubMed  Google Scholar 

  • O′Brien TW, Denslow ND, Anders JC, Courtney BC (1990) The translation system of mammalian mitochondria. Biochim Biophys Acta 1050:174–178

    Article  PubMed  Google Scholar 

  • Olivieri A, Pala M, Gandini F, Hooshiar Kashani B, Perego UA, Woodward SR, Grugni V, Battaglia V, Semino O, Achilli A, Richards MB, Torroni A (2013) Mitogenomes from two uncommon haplogroups mark late glacial/postglacial expansions from the near east and neolithic dispersals within Europe. PLoS ONE 8:e70492

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pajares MA, Durán C, Corrales F, Pliego MM, Mato JM (1992) Modulation of rat liver S-adenosylmethionine synthetase activity by glutathione. J Biol Chem 267:17598–17605

    CAS  PubMed  Google Scholar 

  • Pan W, Zhu S, Yuan M, Cui H, Wang L, Luo X, Li J, Zhou H, Tang Y, Shen N (2010) MicroRNA-21 and microRNA-148a contribute to DNA hypomethylation in lupus CD4 + T cells by directly and indirectly targeting DNA methyltransferase 1. J Immunol. 184:6773–6781

    Article  CAS  PubMed  Google Scholar 

  • Papanicolaou KN, O’Rourke B, Foster DB (2014) Metabolism leaves its mark on the powerhouse: recent progress in post-translational modifications of lysine in mitochondria. Front Physiol 5:301

    Article  PubMed Central  PubMed  Google Scholar 

  • Park SY, Shin MG, Kim HR, Oh JY, Kim SH, Shin JH, Cho YB, Suh SP, Ryang DW (2009) Alteration of mitochondrial DNA sequence and copy number in nasal polyp tissue. Mitochondrion 9:318–325

    Article  CAS  PubMed  Google Scholar 

  • Pirola CJ, Gianotti TF, Burgueño AL, Rey-Funes M, Loidl CF, Mallardi P, Martino JS, Castaño GO, Sookoian S (2013) Epigenetic modification of liver mitochondrial DNA is associated with histological severity of nonalcoholic fatty liver disease. Gut 62:1356–1363

    Article  CAS  PubMed  Google Scholar 

  • Pogribny IP, Karpf AR, James SR, Melnyk S, Han T, Tryndyak VP (2008) Epigenetic alterations in the brains of fisher 344 rats induced by long-term administration of folate/methyl-deficient diet. Brain Res 1237:25–34

    Article  CAS  PubMed  Google Scholar 

  • Pogribny IP, Shpyleva SI, Muskhelishvili L, Bagnyukova TV, James SJ, Beland FA (2009) Role of DNA damage and alterations in cytosine DNA methylation in rat liver carcinogenesis induced by a methyl-deficient diet. Mutat Res 669:56–62

    Article  CAS  PubMed  Google Scholar 

  • Pollack Y, Kasir J, Shemer R, Metzger S, Szyf M (1984) Methylation pattern of mouse mitochondrial DNA. Nucleic Acids Res 12:4811–4824

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rackham O, Shearwood AM, Mercer TR, Davies SM, Mattick JS, Filipovska A (2011) Long noncoding RNAs are generated from the mitochondrial genome and regulated by nuclear-encoded proteins. RNA 17:2085–2093

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rahman I, Chung S (2010) Dietary polyphenols, deacetylases and chromatin remodeling in inflammation. World Rev Nutr Diet 101:84–94

    Article  CAS  PubMed  Google Scholar 

  • Raule N, Sevini F, Santoro A, Altilia S, Franceschi C (2007) Association studies on human mitochondrial DNA: methodological aspects and results in the most common age-related diseases. Mitochondrion 7:29–38

    Article  CAS  PubMed  Google Scholar 

  • Raule N, Sevini F, Li S, Barbieri A, Tallaro F, Lomartire L, Vianello D, Montesanto A, Moilanen JS, Bezrukov V, Blanché H, Hervonen A, Christensen K, Deiana L, Gonos ES, Kirkwood TB, Kristensen P, Leon A, Pelicci PG, Poulain M, Rea IM, Remacle J, Robine JM, Schreiber S, Sikora E, Eline Slagboom P, Spazzafumo L, Antonietta Stazi M, Toussaint O, Vaupel JW, Rose G, Majamaa K, Perola M, Johnson TE, Bolund L, Yang H, Passarino G, Franceschi C (2014) The co-occurrence of mtDNA mutations on different oxidative phosphorylation subunits, not detected by haplogroup analysis, affects human longevity and is population specific. Aging Cell 13:401–407

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rebelo AP, Williams SL, Moraes CT (2009) In vivo methylation of mtDNA reveals the dynamics of protein-mtDNA interactions. Nucleic Acids Res 37:6701–6715

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ren WH, Li XH, Zhang HG, Deng FM, Liao WQ, Pang Y, Liu YH, Qiu MJ, Zhang GY, Zhang YG (2008) Mitochondrial DNA haplogroups in a Chinese Uygur population and their potential association with longevity. Clin Exp Pharmacol Physiol 35:1477–1481

    CAS  PubMed  Google Scholar 

  • Reynolds RM, Jacobsen GH, Drake AJ (2013) What is the evidence in humans that DNA methylation changes link events in utero and later life disease? Clin Endocrinol (Oxf) 78:814–822

    Article  CAS  Google Scholar 

  • Ridge PG, Maxwell TJ, Foutz SJ, Bailey MH, Corcoran CD, Tschanz JT, Norton MC, Munger RG, O′Brien E, Kerber RA, Cawthon RM, Kauwe JS (2014) Mitochondrial genomic variation associated with higher mitochondrial copy number: the Cache County study on memory health and aging. BMC Bioinformatics Suppl 7:S6

    Article  CAS  Google Scholar 

  • Ro S, Ma HY, Park C, Ortogero N, Song R, Hennig GW, Zheng H, Lin YM, Moro L, Hsieh JT, Yan W (2013) The mitochondrial genome encodes abundant small noncoding RNAs. Cell Res 23:759–774

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rose G, Passarino G, Franceschi C, De Benedictis G (2002) The variability of the mitochondrial genome in human aging: a key for life and death? Int J Biochem Cell Biol 34:1449–1460

    Article  CAS  PubMed  Google Scholar 

  • Ross OA, McCormack R, Curran MD, Duguid RA, Barnett YA, Rea IM, Middleton D (2001) Mitochondrial DNA polymorphism: its role in longevity of the Irish population. Exp Gerontol 36:1161–1178

    Article  CAS  PubMed  Google Scholar 

  • Roubertoux PL, Sluyter F, Carlier M, Marcet B, Maarouf-Veray F, Chérif C, Marican C, Arrechi P, Godin F, Jamon M, Verrier B, Cohen-Salmon C (2003) Mitochondrial DNA modifies cognition in interaction with the nuclear genome and age in mice. Nat Genet 35:65–69

  • Ryan MT, Hoogenraad NJ (2007) Mitochondrial-nuclear communications. Annu Rev Biochem 76:701–722

  • Sadakierska-Chudy A, Frankowska M, Filip M (2014) Mitoepigenetics and drug addiction. Pharmacol Ther 144:226–233

    Article  CAS  PubMed  Google Scholar 

  • Scarpulla RC (2006) Nuclear control of respiratory gene expression in mammalian cells. J Cell Biochem 97:673–683

    Article  CAS  PubMed  Google Scholar 

  • Schon EA, Gilkerson RW (2010) Functional complementation of mitochondrial DNAs: mobilizing mitochondrial genetics against dysfunction. Biochim Biophys Acta 1800:245–249

    Article  CAS  PubMed  Google Scholar 

  • Schon EA, DiMauro S, Hirano M (2012) Human mitochondrial DNA: roles of inherited and somatic mutations. Nat Rev Genet 13:878–890

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shaughnessy DT, McAllister K, Worth L, Haugen AC, Meyer JN, Domann FE, Van Houten B, Mostoslavsky R, Bultman SJ, Baccarelli AA, Begley TJ, Sobol RW, Hirschey MD, Ideker T, Santos JH, Copeland WC, Tice RR, Balshaw DM, Tyson FL (2014) Mitochondria, energetics, epigenetics, and cellular responses to stress. Environ Health Perspect 122:1271–1278

    PubMed Central  CAS  PubMed  Google Scholar 

  • She H, Yang Q, Shepherd K, Smith Y, Miller G, Testa C, Mao Z (2011) Direct regulation of complex I by mitochondrial MEF2D is disrupted in a mouse model of Parkinson disease and in human patients. J Clin Invest 121:930–940

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shen F, Huang W, Qi JH, Yuan BF, Huang JT, Zhou X, Feng YQ, Liu YJ, Liu SM (2013) Association of 5-methylcytosine and 5-hydroxymethylcytosine with mitochondrial DNA content and clinical and biochemical parameters in hepatocellular carcinoma. PLoS One 8:e76967

  • Shmookler Reis RJ, Goldstein S (1983) Mitochondrial DNA in mortal and immortal human cells. genome number, integrity, and methylation. J Biol Chem 258:9078–9085

    CAS  PubMed  Google Scholar 

  • Shock LS, Thakkar PV, Peterson EJ, Moran RG, Taylor SM (2011) DNA methyltransferase 1, cytosine methylation, and cytosine hydroxymethylation in mammalian mitochondria. Proc Natl Acad Sci U S A 108:3630–3635

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ŝimková H (1998) Methylation of mitochondrial DNA in carrot (Daucus carota L.). Plant Cell Rep 17:220–224

    Article  Google Scholar 

  • Smiraglia DJ, Kulawiec M, Bistulfi GL, Gupta SG, Singh KK (2008) A novel role for mitochondria in regulating epigenetic modification in the nucleus. Cancer Biol Ther 7:1182–1190

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Song CX, Szulwach KE, Fu Y, Dai Q, Yi C, Li X, Li Y, Chen CH, Zhang W, Jian X, Wang J, Zhang L, Looney TJ, Zhang B, Godley LA, Hicks LM, Lahn BT, Jin P, He C (2011) Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat Biotechnol 29:68–72

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sripada L, Tomar D, Prajapati P, Singh R, Singh AK, Singh R (2012) Systematic analysis of small RNAs associated with human mitochondria by deep sequencing: detailed analysis of mitochondrial associated miRNA. PLoS ONE 7:e44873

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Streck EL, Gonçalves CL, Furlanetto CB, Scaini G, Dal-Pizzol F, Quevedo J (2014) Mitochondria and the central nervous system: searching for a pathophysiological basis of psychiatric disorders. Rev Bras Psiquiatr 36:156–167

    Article  PubMed  Google Scholar 

  • Subramaniam D, Thombre R, Dhar A, Anant S (2014) DNA methyltransferases: a novel target for prevention and therapy. Front Oncol 4:80

    Article  PubMed Central  PubMed  Google Scholar 

  • Sun C, Reimers LL, Burk RD (2011) Methylation of HPV16 genome CpG sites is associated with cervix precancer and cancer. Gynecol Oncol 121:59–63

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, Rao A (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930–935

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Takasaki S (2009) Mitochondrial haplogroups associated with Japanese centenarians, Alzheimer’s patients, Parkinson’s patients, type 2 diabetic patients and healthy non-obese young males. J Genet Genomics 36:425–434

    Article  CAS  PubMed  Google Scholar 

  • Taylor EM, Jones AD, Henagan TM (2014) A Review of mitochondrial-derived fatty acids in epigenetic regulation of obesity and type 2 Diabetes. J Nutrit Health Food Sci 2:1–4

    PubMed Central  PubMed  Google Scholar 

  • Teves SS, Weber CM, Henikoff S (2014) Transcribing through the nucleosome. Trends Biochem Sci 39:577–586

    Article  CAS  PubMed  Google Scholar 

  • Tomasetti M, Neuzil J, Dong L (2014a) MicroRNAs as regulators of mitochondrial function: role in cancer suppression. Biochim Biophys Acta 1840:1441–1453

    Article  CAS  PubMed  Google Scholar 

  • Tomasetti M, Nocchi L, Staffolani S, Manzella N, Amati M, Goodwin J, Kluckova K, Nguyen M, Strafella E, Bajzikova M, Peterka M, Lettlova S, Truksa J, Lee W, Dong LF, Santarelli L, Neuzil J (2014b) MicroRNA-126 suppresses mesothelioma malignancy by targeting IRS1 and interfering with the mitochondrial function. Antioxid Redox Signal 21:2109–2125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torroni A, Wallace DC (1994) Mitochondrial DNA variation in human populations and implications for detection of mitochondrial DNA mutations of pathological significance. J Bioenerg Biomembr 26:261–271

    Article  CAS  PubMed  Google Scholar 

  • Torroni A, Lott MT, Cabell MF, Chen YS, Lavergne L, Wallace DC (1994) mtDNA and the origin of Caucasians: identification of ancient Caucasian-specific haplogroups, one of which is prone to a recurrent somatic duplication in the D-loop region. Am J Hum Genet 55:760–776

    PubMed Central  CAS  PubMed  Google Scholar 

  • Torroni A, Huoponen K, Francalacci P, Petrozzi M, Morelli L, Scozzari R, Obinu D, Savontaus ML, Wallace DC (1996) Classification of European mtDNAs from an analysis of three European populations. Genetics 144:1835–1850

    PubMed Central  CAS  PubMed  Google Scholar 

  • Turk PW, Laayoun A, Smith SS, Weitzman SA (1995) DNA adduct 8-hydroxyl-2′-deoxyguanosine (8-hydroxyguanine) affects function of human DNA methyltransferase. Carcinogenesis 16:1253–1255

    Article  CAS  PubMed  Google Scholar 

  • Vaiserman AM (2014) Epigenetic programming by early-life stress: evidence from human populations. Dev Dyn. doi:10.1002/dvdy.24211

    PubMed  Google Scholar 

  • Valinluck V, Tsai HH, Rogstad DK, Burdzy A, Bird A, Sowers LC (2004) Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2). Nucleic Acids Res 32:4100–4108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vanyushin BF, Kirnos MD (1976) Structure of animal mitochondrial DNA: nucleotide composition, pyrimidine clusters, and methylation character. Mol Biol (Mosk). 10:715–724

    CAS  PubMed  Google Scholar 

  • Vanyushin BF, Kirnos MD (1977) Structure of animal mitochondrial DNA (base composition, pyrimidine clusters, character of methylation). Biochim Biophys Acta 475:323–336

    Article  CAS  PubMed  Google Scholar 

  • Varabyova A, Stojanovski D, Chacinska A (2013) Mitochondrial protein homeostasis. IUBMB Life 65:191–201

    Article  CAS  PubMed  Google Scholar 

  • Vidaurre S, Fitzpatrick C, Burzio VA, Briones M, Villota C, Villegas J, Echenique J, Oliveira-Cruz L, Araya M, Borgna V, Socías T, Lopez C, Avila R, Burzio LO (2014) Down-regulation of the antisense mitochondrial non-coding RNAs (ncRNAs) is a unique vulnerability of cancer cells and a potential target for cancer therapy. J Biol Chem 289:27182–27198

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vignali M, Hassan AH, Neely KE, Workman JL (2000) ATP-dependent chromatin-remodeling complexes. Mol Cell Biol 20:1899–1910

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wallace DC (2013) A mitochondrial bioenergetic etiology of disease. J Clin Invest 123:1405–1412

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wallace DC, Fan W (2010) Energetics, epigenetics, mitochondrial genetics. Mitochondrion 10:12–31

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang Y, Bogenhagen DF (2006) Human mitochondrial DNA nucleoids are linked to protein folding machinery and metabolic enzymes at the mitochondrial inner membrane. J Biol Chem 281:25791–25802

    Article  CAS  PubMed  Google Scholar 

  • Weitzman SA, Turk PW, Milkowski DH, Kozlowski K (1994) Free radical adducts induce alterations in DNA cytosine methylation. Proc Natl Acad Sci U S A 91:1261–1264

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Whelan SP, Zuckerbraun BS (2013) Mitochondrial signaling: forwards, backwards, and in between. Oxid Med Cell Longev 351613

  • Wolffe AP (1994) Architectural transcription factors. Science 264:1100–1103

    Article  CAS  PubMed  Google Scholar 

  • Wong M, Gertz B, Chestnut BA, Martin LJ (2013) Mitochondrial DNMT3A and DNA methylation in skeletal muscle and CNS of transgenic mouse models of ALS. Front Cell Neurosci 7:279

    PubMed Central  PubMed  Google Scholar 

  • Wu J, Grunstein M (2000) 25 years after the nucleosome model: chromatin modifications. Trends Biochem Sci 25:619–623

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Zhang Y (2011) Tet1 and 5-hydroxymethylation: a genome-wide view in mouse embryonic stem cells. Cell Cycle 10:2428–2436

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xie CH, Naito A, Mizumachi T, Evans TT, Douglas MG, Cooney CA, Fan CY, Higuchi M (2007) Mitochondrial regulation of cancer associated nuclear DNA methylation. Biochem Biophys Res Commun 364:656–661

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xiong Y, Fang JH, Yun JP, Yang J, Zhang Y, Jia WH, Zhuang SM (2010) Effects of microRNA-29 on apoptosis, tumorigenicity, and prognosis of hepatocellular carcinoma. Hepatology 51:836–845

    CAS  PubMed  Google Scholar 

  • Yamada S, Nomoto S, Fujii T, Kaneko T, Takeda S, Inoue S, Kanazumi N, Nakao A (2006) Correlation between copy number of mitochondrial DNA and clinico-pathologic parameters of hepatocellular carcinoma. Eur J Surg Oncol 32:303–307

    Article  CAS  PubMed  Google Scholar 

  • Yang KC, Yamada KA, Patel AY, Topkara VK, George I, Cheema FH, Ewald GA, Mann DL, Nerbonne JM (2014) Deep RNA sequencing reveals dynamic regulation of myocardial noncoding RNAs in failing human heart and remodeling with mechanical circulatory support. Circulation 129:1009–1021

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yu J, Peng Y, Wu LC, Xie Z, Deng Y, Hughes T, He S, Mo X, Chiu M, Wang QE, He X, Liu S, Grever MR, Chan KK, Liu Z (2013) Curcumin down- regulates DNA methyltransferase 1 and plays an anti-leukemic role in acute myeloid leukemia. PLoS ONE 8:e55934

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang F, Pracheil T, Thornton J, Liu Z (2013) Adenosine triphosphate (ATP) is a candidate signaling molecule in the mitochondria-to-nucleus retrograde response pathway. Genes (Basel). 4:86–100

    PubMed Central  PubMed  Google Scholar 

  • Zhao S, Wang Y, Liang Y, Zhao M, Long H, Ding S, Yin H, Lu Q (2011) MicroRNA-126 regulates DNA methylation in CD4 + T cells and contributes to systemic lupus erythematosus by targeting DNA methyltransferase 1. Arthritis Rheum 63:1376–1386

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Yuan Q, Mash DC, Goldman D (2011) Substance-specific and shared transcription and epigenetic changes in the human hippocampus chronically exposed to cocaine and alcohol. Proc Natl Acad Sci USA 108:6626–6631

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the European Union’s Seventh Framework Programme (FP7/2007-2011) [Grant number 259679] and by funds from Programma Operativo Nazionale [01_00937] - MIUR “Modelli sperimentali biotecnologici integrati per lo sviluppo e la selezione di molecole di interesse per la salute dell′uomo”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Passarino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Aquila, P., Bellizzi, D. & Passarino, G. Mitochondria in health, aging and diseases: the epigenetic perspective. Biogerontology 16, 569–585 (2015). https://doi.org/10.1007/s10522-015-9562-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-015-9562-3

Keywords

Navigation