Skip to main content

Advertisement

Log in

The anti-inflammatory effects of resveratrol on human peripheral blood mononuclear cells are influenced by a superoxide dismutase 2 gene polymorphism

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Resveratrol is an molecule that provides both anti-inflammatory and antioxidant properties. However, it is unclear whether the basal oxidative state of the cell has any influence on the effects of this compound. In humans, a single nucleotide polymorphism (SNP) is present in the enzyme manganese superoxide dismutase (SOD2), localized in codon 16 (rs4880), which can either be an alanine (A) or valine (V). This SNP causes an imbalance in the cellular levels of SOD2, where AA- and VV-genotypes result in higher or lower enzymatic activity, respectively. Furthermore, the VV-genotype has been associated with high levels of inflammatory cytokines. Here, we examined the effects of a range of resveratrol concentrations on the in vitro activation of human peripheral blood mononuclear cells (PBMCs) carrying different Ala16Val-SOD2 genotypes. Cell proliferation, several oxidative biomarkers and cytokines (IL-1β, IL-6, TNFα, Igγ and IL-10) were analyzed. In addition, the effects of resveratrol on the expression of the sirt1 gene were evaluated by qRT-PCR. After 24 h exposure to resveratrol, A-genotype PBMCs displayed a decrease in cell proliferation, whilst VV-cells contrasted; At 10 µM resveratrol, there was a significant decrease in the production of inflammatory cytokines in A-allele cells; however, VV-cells generally displayed a subtle decrease in these, except for TNFα, which was not affected. In all SOD2 genotypes cells exposed to resveratrol resulted in an upregulation of Sirt1 levels. Together, these results suggest that the effect of resveratrol on human PBMC activation is not universal and is dependent on the Ala16Val-SOD2 SNP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Algarve TD, Barbisan F, Ribeiro EE, Duarte MM, Mânica-Cattani MF, Mostardeiro C, Lenz AF, da Cruz IB (2013) In vitro effects of Ala16Val manganese superoxide dismutase gene polymorphism on human white blood cells exposed to methylmercury. Genet Mol Res 12(4):5134–5144

    Article  CAS  PubMed  Google Scholar 

  • Ambrosone CB, Freudenheim JL, Thompson PA, Bowman E, Vena JE, Marshall JR, Graham S, Laughlin R, Nemoto T, Shields PG (1999) Manganese superoxide dismutase (MnSOD) genetic polymorphisms, dietary antioxidants and risk of breast cancer. Cancer Res 59(3):602–606

    CAS  PubMed  Google Scholar 

  • Barbisan F, Motta R, Trott A, Azzolin V, Dornelles EB, Marcon M, Algarve TD, Duarte MM, Mostardeiro CP, Unfer TC, Schott KL, da Cruz IB (2014) Methotrexate-related response on human peripheral blood mononuclear cells may be modulated by the Ala16Val-SOD2 gene polymorphism. PLoS ONE 9(10):e107299

    Article  PubMed Central  PubMed  Google Scholar 

  • Bresciani G, Cruz I, de Paz JA, Cuevas MJ, González-Gallego J (2013a) The MnSOD Ala16Val SNP: relevance to human diseases and interaction with environmental factors. Free Radic Res 47(10):781–792

    Article  CAS  PubMed  Google Scholar 

  • Bresciani G, González-Gallego J, da Cruz IB, de Paz JA, Cuevas MJ (2013b) The Ala16Val MnSOD gene polymorphism modulates oxidative response to exercise. Clin Biochem 46(4–5):335–340

    Article  CAS  PubMed  Google Scholar 

  • Cavagnat MM, Weyand CM, Goronzy JJ (2012) Chronic inflammation and aging: DNA damage tips the balance. Curr Opin Immunol 24(3):488–493

    Google Scholar 

  • Costa F, Dornelles E, Mânica-Cattani MF, Algarve TD, Souza Filho OC, Sagrillo MR (2012) Influence of Val16Ala SOD2 polymorphism on the in vitro effect of clomiphene citrate in oxidative metabolism. Reprod Biomed Online 24(4):474–481

    Article  CAS  PubMed  Google Scholar 

  • dos Santos Montagner GF, Sagrillo M, Machado MM, Almeida RC, Mostardeiro CP, Duarte MM, da Cruz IB (2010) Toxicological effects of ultraviolet radiation on lymphocyte cells with different manganese superoxide dismutase Ala16Val polymorphism genotypes. Toxicol In Vitro 24(5):1410–1416

    Article  PubMed  Google Scholar 

  • Dröse S, Brandt U, Wittig I (2014) Mitochondrial respiratory chain complexes as sources and targets of thiol-based redox-regulation. Biochim Biophys Acta 1844(8):1344–1354

    Article  PubMed  Google Scholar 

  • Fulop T, Le Page A, Fortin C, Witkowski JM, Dupuis G, Larbi A (2014) Cellular signaling in the aging immune system. Curr Opin Immunol 29:105–111

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Whiteman M (2004) Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol 142(2):231–255

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Holley AK, Dhar SK, Xu Y, St Clair DK (2012) Manganese superoxide dismutase: beyond life and death. Amino Acids 42(1):139–158

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hori YS, Kuno A, Hosoda R, Horio Y (2013) Regulation of FOXOs and p53 by SIRT1 modulators under oxidative stress. PLoS ONE 11(9):e73875

    Article  Google Scholar 

  • Jentzsch AM, Bachmann H, Fürst P, Biesalski HK (1983) Improved analysis of malondialdehyde in human body fluids. Free Radic Biol Med 2092:251–256

    Google Scholar 

  • Kamiński MM, Röth D, Krammer PH, Gülow K (2013) Mitochondria as oxidative signaling organelles in T-cell activation: physiological role and pathological implications. Arch Immunol Ther Exp (Warsz) 61(5):367–384

    Article  Google Scholar 

  • Martin RC, Li Y, Liu Q, Jensen NS, Barker DF, Doll MA, Hein DW (2009) Manganese superoxide dismutase V16A single-nucleotide polymorphism in the mitochondrial targeting sequence is associated with reduced enzymatic activity in cryopreserved human hepatocytes. DNA Cell Biol 28(1):3–7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Montano MA, da Cruz IB, Duarte MM, Krewer CC, da Rocha MIU, Mânica-Cattani Soares FA, Rosa G, Maris AF, Battiston FG, Trott A, Lera JP (2012) Inflammatory cytokines in vitro production are associated with Ala16Val superoxide dismutase gene polymorphism of peripheral blood mononuclear cells. Cytokine 60(1):30–33

    Article  CAS  PubMed  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1–2):55–63

    Article  CAS  PubMed  Google Scholar 

  • Parra JM, Sánchez-Fortún S, Castaño A (2012) Assessment of genotoxic effects induced by selected pesticides on RTG-2 fish cells by means of a modified fast micromethod assay. Environ Toxicol 27(4):238–243

    Article  CAS  PubMed  Google Scholar 

  • Poulsen MM, Jørgensen JO, Jessen N, Richelsen B, Pedersen SB (2013) Resveratrol in metabolic health: an overview of the current evidence and perspectives. Ann N Y Acad Sci 1290:74–82

    Article  CAS  PubMed  Google Scholar 

  • Shimoda-Matsubayashi S, Matsumine H, Kobayashi T, Nakagawa-Hattori Y, Shimizu Y, Mizuno Y (2006) Structural dimorphism in the mitochondrial targeting sequence in the human manganese superoxide dismutase gene. A predictive evidence for conformational change to influence mitochondrial transport and a study of allelic association in Parkinson’s disease. Biochem Biophys Res Commun 226(2):561–565

    Article  Google Scholar 

  • Sutton A, Imbert A, Igoudjil A, Descatoire V, Cazanave S, Pessayre D, Degoul F (2005) The manganese superoxide dismutase Ala16Val dimorphism modulates both mitochondrial import and mRNA stability. Pharmacogenet Genom 15(5):311–319

    Article  CAS  Google Scholar 

  • Švajger U, Jeras M (2012) Anti-inflammatory effects of resveratrol and its potential use in therapy of immune-mediated diseases. Int Rev Immunol 31(3):202–222

    Article  PubMed  Google Scholar 

  • Wang B, Sun J, Li X, Zhou Q, Bai J, Shi Y, Le G (2013) Resveratrol prevents suppression of regulatory T-cell production, oxidative stress and inflammation of mice prone or resistant to high-fat diet-induced obesity. Nutr Res 33(11):971–981

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Sun X, Li X, Dong X, Li P, Zhao L (2015) Resveratrol attenuates intermittent hypoxia-induced insulin resistance in rats: involvement of Sirtuin 1 and the phosphatidylinositol-4,5-bisphosphate 3-kinase/AKT pathway. Mol Med Rep 11(1):151-158

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zou T, Yang Y, Xia F, Huang A, Gao X, Fang D, Xiong S, Zhang J (2013) Resveratrol inhibits CD4 + T-cell activation by enhancing the expression and activity of Sirt1. PLoS ONE 8(9):e75139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivana Beatrice Mânica da Cruz.

Additional information

Dianni Capeleto and Fernanda Barbisan have contributed equally to produce the present study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Capeleto, D., Barbisan, F., Azzolin, V. et al. The anti-inflammatory effects of resveratrol on human peripheral blood mononuclear cells are influenced by a superoxide dismutase 2 gene polymorphism. Biogerontology 16, 621–630 (2015). https://doi.org/10.1007/s10522-015-9561-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-015-9561-4

Keywords

Navigation