Skip to main content

Advertisement

Log in

Resistance to prooxidant agent paraquat in the short- and long-lived lines of the seed beetle (Acanthoscelides obtectus)

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

In the present study we test whether variation in resistance to paraquat (PQ), a free radical generator, correlates with variation in longevity in two sets of seed beetles (Acanthoscelides obtectus) experimental lines that were selected either for early reproduction and short-life or late reproduction and long-life. Long-lived late reproduction lines (L) showed increased resistance to PQ, while opposite was true for short-lived early reproduction line (E). Striking outcome of the selection for early and late reproduction in A. obtectus is asymmetry of responses to alternate mating schedules. The intensity of response depended on selection regime, sex and PQ dose. Evolution of longevity and PQ resistance was faster in L than E selection regime, and in females than males. To understand how age-specific mortality rates are affected by PQ we decomposed post-stress mortality data (using Gompertz mortality model) into initial mortality rate, which reflects basal vulnerability to stresses and age-specific mortality rate, which concerns the rate of increase in stress vulnerability, i.e. the rate of senescence. By estimating the parameters of the Gompertz mortality model we have shown that longevity reduction caused by PQ was the consequence of the increased baseline mortality rather than a speed up of the rate of ageing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arking R, Buck S, Berrios A, Dwyer S, Baker GT (1991) Elevated paraquat resistance can be used as a bioassay for longevity in a genetically based long-lived strain of Drosophila. Dev Genet 12:362–370

    Article  PubMed  CAS  Google Scholar 

  • Arking R, Buck S, Novoseltev VN, Hwangbo D-S, Lane M (2002) Genomic plasticity, energy allocations, and the extended longevity phenotypes of Drosophila. Ageing Res Rev 1:209–228

    Article  PubMed  CAS  Google Scholar 

  • Arosio P, Ingrassia R, Cavadini P (2009) Ferritins: a family of molecules for iron storage, antioxidation and more. Biochim Biophys Acta 1790:589–599

    Article  PubMed  CAS  Google Scholar 

  • Bonilla E, Medina-Leendertz S, Villalobos V, Molero L, Bohórquez A (2006) Paraquat-induced oxidative stress in Drosophila melanogaster: effects of melatonin, glutathione, serotonin, minocycline, lipoic acid and ascorbic acid. Neurochem Res 31:1425–1432

    Article  PubMed  CAS  Google Scholar 

  • Camus MF, Clancy DJ, Dowling DK (2012) Mitochondria, maternal inheritance, and male aging. Curr Biol 22:1717–1721

    Article  PubMed  CAS  Google Scholar 

  • Chaudhuri A, Bowling K, Funderburk C, Lawal H, Inamdar A, Wang Z, and O’Donnell JM (2007) Interaction of genetic and environmental factors in a Drosophila Parkinsonism model. J Neurosci 27:2457–2467

    Article  Google Scholar 

  • Cocheme HM, Murphy MP (2008) Complex I is the major site of mitochondrial superoxide production by paraquat. J Biol Chem 283:1786–1798

    Article  PubMed  CAS  Google Scholar 

  • Curtsinger JW, Khazaeli AA (2002) Lifespan, QTLs, age-specificity, and pleiotropy in Drosophila. Mech Ageing Dev 123:81–93

    Article  PubMed  Google Scholar 

  • Driver C, Tawadros N (2000) Cytoplasmic genomes that confer additional longevity in Drosophila melanogaster. Biogerontology 1:255–260

    Article  PubMed  CAS  Google Scholar 

  • Frankham R (1990) Are responses to artificial selection for reproductive fitness characters consistently asymmetrical? Genet Res 56:35–42

    Article  Google Scholar 

  • Fukushima T, Tanaka K, Lim H, Moriyama M (2002) Mechanism of cytotoxicity of paraquat. Environ Health Prev Med 7:89–94

    Article  PubMed  CAS  Google Scholar 

  • Geiser DL, Winzerling JJ (2012) Insect transferrins: multifunctional proteins. Biochim Biophys Acta 1820:437–451

    Article  PubMed  Google Scholar 

  • Gems D, Partridge L (2013) Genetics of longevity in model organisms: debates and paradigm shifts. Annu Rev Physiol 75:25.1–25.24

    Article  Google Scholar 

  • Grönke S, Clarke D-F, Broughton S, Andrews TD, Partridge L (2010) Molecular evolution and functional characterization of Drosophila insulin-Like peptides. PLoS Genet 6:e1000857. doi:10.1371/journal.pgen.1000857

    Article  PubMed  Google Scholar 

  • Harshman LG, Haberer BA (2000) Oxidative stress resistance: a robust correlated response to selection in extended longevity lines of Drosophila melanogaster? J Gerontol 55A:B415–B417

    Google Scholar 

  • Harshman LG, Moore KM, Sty MA, Magwire MM (1999) Stress resistance and longevity in selected lines of Drosophila melanogaster. Neurobiol Aging 20:521–529

    Article  PubMed  CAS  Google Scholar 

  • Jimenez-Del-Rio M, Daza-Restrepo A, Velez-Pardo C (2008) The cannabinoid CP55,940 prolongs survival and improves locomotor activity in Drosophila melanogaster against paraquat: implications in Parkinson’s disease. Neurosci Res 61:404–411

    Article  PubMed  CAS  Google Scholar 

  • Khazaeli AA, Nuzhdin SV, Curtsinger JW (2007) Genetic variation for life span, resistance to paraquat, and spontaneous activity in unselected populations of Drosophila melanogaster: implications for transgenic rescue of life span. Mech Ageing Dev 128:486–493

    Article  PubMed  CAS  Google Scholar 

  • Kirkwood TBL, Kowald A (2012) The free-radical theory of ageing—older, wiser and still alive. BioEssays 34:692–700

    Article  PubMed  CAS  Google Scholar 

  • Lazarević J, Tucić N, Šešlija Jovanović D, Večeřa J, Kodrík D (2012) The effects of selection for early and late reproduction on metabolite pools in Acanthoscelides obtectus Say. Insect Sci 19:303–314

    Article  Google Scholar 

  • Min K-J, Tatar M (2006) Restriction of amino acids extends lifespan in Drosophila melanogaster. Mech Ageing Dev 127:643–646

    Article  PubMed  CAS  Google Scholar 

  • Minois N (2001) Resistance to stress as a function of age in transgenic Drosophila melanogaster overexpressing Hsp70. J Insect Physiol 47:1007–1012

    Article  PubMed  CAS  Google Scholar 

  • Missirlis F, Hu J, Kirby K, Hilliker AJ, Rouault TA, Phillips JP (2003) Compartment-specific protection of iron-sulfur proteins by superoxide dismutase. J Biol Chem 278:47365–47369

    Article  PubMed  CAS  Google Scholar 

  • Mockett RJ, Orr WC, Rahmandar JJ, Sohal BH, Sohal RS (2001) Antioxidant status and stress resistance in long- and short-lived lines of Drosophila melanogaster. Exp Gerontol 36:441–463

    Article  PubMed  CAS  Google Scholar 

  • Mockett RJ, Bayne AÉV, Kwong LK, Orr WC, Sohal RS (2003) Ectopic expression of catalase in Drosophila mitochondria increases stress resistance but not longevity. Free Radic Biol Med 34:207–217

    Article  PubMed  CAS  Google Scholar 

  • Mohammadi-Bardbori A, Ghazi-Khansari M (2008) Alternative electron acceptors: proposed mechanism of paraquat mitochondrial toxicity. Environ Toxicol Pharmacol 26:1–5

    Article  PubMed  CAS  Google Scholar 

  • Morrow G, Samson M, Michaud S, Tanguay RM (2004) Overexpression of the small mitochondrial Hsp22 extends Drosophila life span and increases resistance to oxidative stress. FASEB J 18:598–599

    PubMed  CAS  Google Scholar 

  • Mourikis P, Hurlbut GD, Artavanis-Tsakonas S (2006) Enigma, a mitochondrial protein affecting lifespan and oxidative stress response in Drosophila. Proc Natl Acad Sci USA 103:1307–1312

    Google Scholar 

  • Nichol H, Law JH, Winzerling JJ (2002) Iron metabolism in insects. Annu Rev Entomol 47:535–559

    Article  PubMed  CAS  Google Scholar 

  • Orr WC, Radyuk SN, Prabhudesai L, Toroser D, Benes JJ, Luchak JM, Mockett RJ, Rebrin I, Hubbard JG, Rajindar S, Sohal RS (2005) Overexpression of glutamate-cysteine ligase extends life span in Drosophila melanogaster. J Biol Chem 280:37331–37338

    Article  PubMed  CAS  Google Scholar 

  • Pham DQD, Winzerling JJ (2010) Insect Ferritins: typical or atypical? Biochim Biophys Acta 1800:824–833

    Article  PubMed  CAS  Google Scholar 

  • Pletcher SD (1999) Model fitting and hypothesis testing for age-specific mortality data. J Evol Biol 12:430–439

    Article  Google Scholar 

  • Rattan SIS (2012) Biogerontology: from here to where? The Lord Cohen Medal Lecture—2011. Biogerontology 13:83–91

    Article  PubMed  Google Scholar 

  • Ruan H, Tang XD, Chen M-L, Joiner M-LA, Sun G, Brot N, Weissbach H, Heinemann SH, Iverson L, Wu C-F, Hoshi T (2002) High-quality life extension by the enzyme peptide methionine sulfoxide reductase. Proc Natl Acad Sci USA 99:2748–2753

    Article  PubMed  CAS  Google Scholar 

  • SAS Insitute, Inc. (2004) The SAS System for Windows. Release 9.1. SAS Institute, Cary

    Google Scholar 

  • Seehuus S-C, Norberg K, Gimsa U, Krekling T, Amdam GV (2006) Reproductive protein protects functionally sterile honey bee workers from oxidative stress. Proc Natl Acad Sci USA 103:962–967

    Article  PubMed  CAS  Google Scholar 

  • Šešlija D (2005) Analysis of the selection effects on fitness components in the bean weevil (Acanthoscelides obtectus). Doctoral dissertation, University of Belgrade

  • Šešlija D, Tucić N (2008) The genetic architecture of extended life span in the seed beetle Acanthoscelides obtectus (Coleoptera, Bruchidae). Eur J Entomol 105:553–560

    Google Scholar 

  • Šešlija D, Blagojević D, Spasić M, Tucić N (1999) Activity of superoxide dismutase and catalase in the bean weevil (Acanthoscelides obtectus) selected for postponed senescence. Exp Gerontol 34:185–195

    Article  PubMed  Google Scholar 

  • Šešlija D, Lazarević J, Janković B, Tucić N (2009) Mating behavior in the seed beetle Acanthoscelides obtectus selected for early and late reproduction. Behav Ecol 20:547–552

    Article  Google Scholar 

  • Speakman JR, Selman C (2011) The free-radical damage theory: accumulating evidence against a simple link of oxidative stress to ageing and lifespan. BioEssays 33:255–259

    Article  PubMed  Google Scholar 

  • Stojković B, Savković U (2011) Gender differences in longevity in early and late reproduced lines of the seed beetle. Arch Biol Sci (Belgrade) 63:129–136

    Article  Google Scholar 

  • Stojković B, Šešlija-Jovanović D, Tucić B, Tucić N (2010) Homosexual behaviour and its longevity cost in females and males of the seed beetle Acanthoscelides obtectus. Physiol Entomol 35:308–316

    Article  Google Scholar 

  • Tang S, Le PK, Tse S, Wallace DC, Huang T (2009) Heterozygous mutation of Opa1 in Drosophila shortens lifespan mediated through increased reactive oxygen species production. PLoS ONE 4:e4492. doi:10.1371/journal.pone.0004492

    Article  PubMed  Google Scholar 

  • Tucić N, Gliksman I, Šešlija D, Milanović D, Mikuljanc S, Stojković O (1996) Laboratory evolution of longevity in the bean weevil (Acanthoscelides obtectus). J Evol Biol 9:485–503

    Article  Google Scholar 

  • Vermeulen CJ, Van De Zande L, Bijlsma R (2005) Resistance to oxidative stress induced by paraquat correlates well with both decreased and increased lifespan in Drosophila melanogaster. Biogerontology 6:387–395

    Article  PubMed  CAS  Google Scholar 

  • Vettraino J, Buck S, Arking R (2001) Direct selection for paraquat resistance in Drosophila results in a different extended longevity phenotype. J Gerontol 56A:B415–B425

    Google Scholar 

  • Vina J, Sastre J, Pallardo F, Borras C (2003) Mitochondrial theory of aging: importance to explain why females live longer than males. Antioxid Redox Signal 5:549–556

    Article  PubMed  CAS  Google Scholar 

  • Wensink MJ, van Heemst D, Maarten P, Rozing MP, Westendorp RGJ (2012) The maintenance gap: a new theoretical perspective on the evolution of aging. Biogerontology 13:197–201

    Article  PubMed  Google Scholar 

  • Wolf JN, Gemmell NJ (2012) Mitochondria, maternal inheritance, and asymmetric fitness: why males die younger? BioEssays 35:93–99

    Article  Google Scholar 

  • Yashin AI, Cypser JW, Johnson TE, Michalski AI, Boyko SI, Vasili N, Novoseltsev VN (2002) Heat shock changes the heterogeneity distribution in populations of Caenorhabditis elegans : does it tell us anything about the biological mechanism of stress response? J Gerontol Biol Sci 57A:B83–B92

    Article  Google Scholar 

  • Zimniak P (2012) What is the proximal cause of aging? Front Genet 3:1–4

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Serbian Ministry of Education, Science and Technological Development Grant No. 173007. The manuscript reviewer provided valuable input for the revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jelica Lazarević.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lazarević, J., Đorđević, M., Stojković, B. et al. Resistance to prooxidant agent paraquat in the short- and long-lived lines of the seed beetle (Acanthoscelides obtectus). Biogerontology 14, 141–152 (2013). https://doi.org/10.1007/s10522-013-9417-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-013-9417-8

Keywords

Navigation