Skip to main content

Advertisement

Log in

Ganoderma lucidum (Fr.) P. Karst enhances activities of heart mitochondrial enzymes and respiratory chain complexes in the aged rat

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Aging is associated with increased oxidative damage at multiple cellular levels, decline in cellular energy production and enhanced free radical status. The effect of the medicinal mushroom, Ganoderma lucidum on the activities of tricarboxylic acid (Krebs) cycle enzymes and mitochondrial complexes I–IV of the electron transport chain in aged rats were investigated. The activity of Krebs cycle enzymes, isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, succinate dehydrogenase, and malate dehydrogenase as well as mitochondrial complexes I, II, III, and IV were determined in heart of aged male Wistar rats orally administrated with 70% ethanolic extract (50 and 250 mg/kg) of G. lucidum. DL-α-lipoic acid (100 mg/kg) was taken as the positive control. Administration of the G. lucidum, once daily for 15 days, was significantly (P < 0.05) effective to enhance the Krebs cycle dehydrogenases, and mitochondrial electron transport chain complex IV activities in aged rats. The profound activity of the extract can be correlated to the significant antioxidant property of G. lucidum. The results of the study revealed that G. lucidum is effective to ameliorate the age associated decline of cellular energy status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Arai T, Nakahara K, Matsuoka H, Sawabe M, Chida K, Matsushita S, Takubo K, Honma N, Nakamura K, Izumiyama N, Esaki Y (2003) Age-related mitochondrial DNA deletion in human heart: its relationship with cardiovascular diseases. Aging Clin Exp Res 15:1–5

    PubMed  CAS  Google Scholar 

  • Arivazhagan P, Ramanathan K, Panneerselvam C (2001) Effect of DL-alpha-lipoic acid on mitochondrial enzymes in aged rats. Chem Biol Interact 138:189–198. doi:10.1016/S0009-2797(01)00268-X

    Article  PubMed  CAS  Google Scholar 

  • Augustin W, Wiswedel I, Noack H, Reinheckel T, Reichelt O (1997) Role of endogenous and exogenous antioxidants in the defence against functional damage and lipid peroxidation in rat liver mitochondria. Mol Cell Biochem 174:199–205. doi:10.1023/A:1006804423627

    Article  PubMed  CAS  Google Scholar 

  • Beckman KB, Ames BN (1998) The free radical theory of aging matures. Physiol Rev 78:547–581

    PubMed  CAS  Google Scholar 

  • Beyer RE (1992) An analysis of the role of coenzyme Q in free radical generation and as an anti oxidant. Biochem Cell Biol 70:390–403

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  PubMed  CAS  Google Scholar 

  • Cadenas E, Davies KJ (2000) Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med 29:222–230. doi:10.1016/S0891-5849(00)00317-8

    Article  PubMed  CAS  Google Scholar 

  • Capaldi RA, Marusich MF, Taanman JW (1995) Mammalian cytochrome-c oxidase: characterization of enzyme and immunological detection of subunits in tissue extracts and whole cells. Methods Enzymol 260:117–132. doi:10.1016/0076-6879(95)60134-1

    Article  PubMed  CAS  Google Scholar 

  • Castelluccio C, Baracca A, Fato R et al (1994) Mitochondrial activities of rat heart during aging. Mech Ageing Dev 79:73–88. doi:10.1016/0047-6374(94)91583-0

    Article  Google Scholar 

  • Chinnery PF, Turnbull DM (2000) Mitochondrial DNA mutations in the pathogenesis of human disease. Mol Med 6:425–432. doi:10.1007/s0089400060425

    Article  CAS  Google Scholar 

  • Chow CK (1991) Vitamin E and oxidative stress. Free Radic Biol Med 11:215–232. doi:10.1016/0891-5849(91)90174-2

    Article  PubMed  CAS  Google Scholar 

  • Coleman R, Silbermann M, Gershon D, Reznick AZ (1987) Giant mitochondria in the myocardium of aging and endurance-trained mice. Gerontology 33:34–39

    Article  PubMed  CAS  Google Scholar 

  • Dai YR, Gao CM, Tian QL, Yin Y (1987) Effect of extracts of some medicinal plants on superoxide dismutase activity in mice. Planta Med 53:309–310. doi:10.1055/s-2006-962723

    Article  PubMed  CAS  Google Scholar 

  • Drouet M, Lauthier F, Charmes JP, Sauvage P, Ratin MH (1999) Age associated changes in mitochondrial parameters on peripheral human lymphocytes. Exp Gerontol 34:69–78. doi:10.1016/S0531-5565(99)00058-3

    Article  Google Scholar 

  • Fannin SW, Lesnefsky EJ, Slabe TJ, Hassan MO, Hoppel CL (1999) Aging selectively decreases oxidative capacity in rat heart interfibrillary mitochondria. Arch Biochem Biophys 372:399–407. doi:10.1006/abbi.1999.1508

    Article  PubMed  CAS  Google Scholar 

  • Fatania H, Al-Nassar EK, Sidhan V (1993) Purification and partial characterization NADP′-linked isocitrate dehydrogenase from rat liver cytosol. FEBS Lett 320:57–60

    Article  PubMed  CAS  Google Scholar 

  • Filburn CR, Edris W, Tamatani M, Hogue B, Kudryashova I, Hansford RD (1996) Mitochondrial electron transport chain activities and DNA deletions in regions of rat brain. Mech Ageing Dev 87:35–46. doi:10.1016/0047-6374(96)01696-X

    Article  PubMed  CAS  Google Scholar 

  • Fridovich I (1974) Superoxide dismutase. Annu Rev Biochem 44:147–159. doi:10.1146/annurev.bi.44.070175.001051

    Article  Google Scholar 

  • Ghosh MK, Chattopadhyay DJ, Chatterjee IB (1996) Vitamin C prevents oxidative damage. Free Radic Res 25:173–179. doi:10.3109/10715769609149922

    Article  PubMed  CAS  Google Scholar 

  • Hagen TM, Moreau R, Suh JH, Violi F (2001) Mitochondrial decay in the aging rat heart; evidence for improvement by dietary supplementation with acetyl-l-carnitine and/or lipoic acid. FASEB J 15:700–706. doi:10.1096/fj.00-0176com

    Article  PubMed  Google Scholar 

  • Halliwell B, Chirico S (1993) Lipid peroxidation: its mechanism measurement and significance. Am J Clin Nutr 57:715–725

    Google Scholar 

  • Halliwell B, Gutteridge JMC (1990) Role of free radicals and catalytic metal ions in human diseases: an overview. Methods Enzymol 186:1–85. doi:10.1016/0076-6879(90)86093-B

    Article  PubMed  CAS  Google Scholar 

  • Haripriya D, Devi AM, Kokilavani V, Sangeetha P, Pannerselvam C (2004) Age-dependant alterations in mitochondrial enzymes in cortex, striatum and hippocampus of rat brain-potential role of l-Carnitine. Biogerentology 5:355–361. doi:10.1007/s10522-004-2575-y

    Article  CAS  Google Scholar 

  • Harman D (1992) Free radical theory of aging. Mutat Res 275:257–266

    PubMed  CAS  Google Scholar 

  • Hiona A, Leeuwenburgh C (2008) The role of mitochondrial DNA mutations in aging and sarcopenia: implications for the mitochondrial vicious cycle theory of aging. Exp Gerontol 43:24–33. doi:10.1016/j.exger.2007.10.001

    Article  PubMed  CAS  Google Scholar 

  • Hsieh RH, Hou JH, Hsu HS, Wei YH (1994) Age dependent respiratory function and mitochondrial DNA deletion in human skeletal muscle mitochondria. Biochem Mol Biol Int 32:1009–1022

    PubMed  CAS  Google Scholar 

  • Huie CW, Di X (2004) Chromatographic and electrophoretic methods for Lingzhi pharmacologically active components. J Chromatogr B Anal Technol Biomed Life Sci 812:241–257

    CAS  Google Scholar 

  • Janssen MJA, Trijbels MJ, Sengers ACR, Smeitink MJA, van den Heuvel PL, Wintjes MTL, Stoltenborg-Hogenkamp MJB, Rodenburg TJR (2007) Spectrophotometric assay for complex I of the respiratory chain in tissue samples and cultured fibroblasts. Clin Chem 53:729–731. doi:10.1373/clinchem.2006.078873

    Article  PubMed  CAS  Google Scholar 

  • Jones S, Janardhanan KK (2000) Antioxidant and antitumor activity of Ganoderma lucidum (Curt: Fr.) P. Karst—Reishi (Aphyllophoromycetideae) from South India. Int J Med Mushroom 2:195–200

    Google Scholar 

  • Jong SC, Birmingham JM (1992) Medicinal benefits of the mushroom Ganoderma. Adv Appl Microbiol 37:101. doi:10.1016/S0065-2164(08)70253-3

    Article  PubMed  CAS  Google Scholar 

  • Kim KC, Kim IG (1999) Ganoderma lucidum extract protects DNA from strand breakage caused by hydroxyl radical and UV irradiation. Int J Mol Med 4:273–277

    PubMed  CAS  Google Scholar 

  • Krahenbuhl S, Chang M, Brass EP, Hoppel CL (1991) Decreased activities of ubiquinol: ferricytochrome c oxidoreductase (complex III) and ferrocytochrome c: oxygen oxidoreductase (complex IV) in liver mitochondria from rats with hydroxycobalamin [c lactam]-induced methylmalonic aciduria. J Biol Chem 266:20998–21003

    PubMed  CAS  Google Scholar 

  • Kumaran S, Savitha S, Anusuya Devi M, Panneerselvam C (2004) l-Carnitine and DL-a lipoic acid reverses the age related deficit in glutathione redox state in skeletal muscle and heart tissues. Mech Ageing Dev 125:507–512. doi:10.1016/j.mad.2004.05.004

    Article  PubMed  CAS  Google Scholar 

  • Lai SW, Yu SM, Yuen HW, So FK, Zee YS, Chang CCR (2008) Antagonizing β-amyloid peptide neurotoxicity of the anti-aging fungus Ganoderma lucidum. Brain Res 1190:215–224. doi:10.1016/j.brainres.2007.10.103

    Article  PubMed  CAS  Google Scholar 

  • Lakshmi B, Ajith TA, Sheena M, Nidhi G, Janardhanan KK (2003) Antiperoxidative, anti-inflammatory and antimutagenic activities of ethanol extract of the mycelium of Ganoderma lucidum occurring in South India. Teratog Carcinog Mutagen s1:85–97

    Article  CAS  Google Scholar 

  • Lee MJ, Kwon H, Jeong H, June Woo Lee WH, Lee YS, Baek JS, Surh JY (2001) Inhibition of lipid peroxidation and oxidative DNA damage by Ganoderma lucidum. Phyther Res 15:245–249. doi:10.1002/ptr.830

    Article  CAS  Google Scholar 

  • Lesnefsky EJ, Moghaddas S, Tandler B, Kerner J, Hoppel CL (2001) Mitochondria dysfunction in cardiac disease: ischemia—reperfusion, aging and heart failure. J Mol Cell Cardiol 33:1065–1089. doi:10.1006/jmcc.2001.1378

    Article  PubMed  CAS  Google Scholar 

  • Lin SB, Li CH, Lee SS, Kan LS (2003) Triterpene-enriched extracts from Ganoderma lucidum inhibit growth of hepatoma cells via suppressing protein kinase C, activating mitogen-activated protein kinases and G2-phase cell cycle arrest. Life Sci 72:2381. doi:10.1016/S0024-3205(03)00124-3

    Article  PubMed  CAS  Google Scholar 

  • Linnane AW, Marzuki S, Ozawa T, Tanaka M (1989) Mitochondrial DNA mutations as an important contributor to ageing and degenerative disease. Lancet 1:642–645. doi:10.1016/S0140-6736(89)92145-4

    Article  PubMed  CAS  Google Scholar 

  • Liu F, Ooi VEC, Chang ST (1997) Free radical scavenging activities of mushroom polysaccharide extracts. Life Sci 64:1005–1011. doi:10.1016/S0024-3205(99)00027-2

    Article  Google Scholar 

  • Marin-Garcia J, Goldenthal MJ (2002) Understanding the impact of mitochondrial defects in cardiovascular disease: a review. J Card Fail 8:347–361. doi:10.1054/jcaf.2002.127774

    Article  PubMed  CAS  Google Scholar 

  • Marriage BJ, Clandinin MT, Macdonald IM, Glerum DM (2004) Cofactor treatment improves ATP synthetic capacity in patients with oxidative phosphorylation disorders. Mol Genet Metab 81:263–272. doi:10.1016/j.ymgme.2003.12.008

    Article  PubMed  CAS  Google Scholar 

  • Mehler AH, Kornberg A, Grisolia S, Ochoa S (1948) The enzymatic mechanisms of oxidation and reduction between malate or isocitrate and pyruvate. J Biol Chem 174:961–977

    PubMed  CAS  Google Scholar 

  • Miquel J (2002) Can antioxidant diet supplementation protect against age related mitochondrial damage? Ann NY Acad Sci 959:508–516

    Article  PubMed  CAS  Google Scholar 

  • Miquel J, Economos AC, Flaming J, Johnson J (1980) Mitochondrial role in cell aging. Exp Gerontol 15:575–591. doi:10.1016/0531-5565(80)90010-8

    Article  PubMed  CAS  Google Scholar 

  • Mizuno Y, Yoshino H, Ikebe S, Hattori N, Kobayashi T, Shimoda-Matsubayashi S, Matsumine H, Kondo T (1998) Mitochondrial dysfunction in Parkinson’s disease. Ann Neurol 44:S99–S109. doi:10.1002/ana.410440116

    Article  PubMed  CAS  Google Scholar 

  • Muscari C, Giaccari A, Giorano E, Clo C, Guarnieri C, Caldarera CM (1996) Role of reactive oxygen species in cardiovascular aging. Mol Cell Biochem 160-161:159–166. doi:10.1007/BF00240046

    Article  PubMed  CAS  Google Scholar 

  • Navarro A, Gomez C, Sanchez-Pino MJ, Gonzalez H, Bandez MJ, Boveris AD, Boveris A (2005) Vitamin E at high doses improves survival, neurological performance, and brain mitochondrial function in aging male mice. Am J Physiol Regul Integr Comp Physiol 289:R1392–R1399. doi:10.1152/ajpregu.00834.2004

    PubMed  CAS  Google Scholar 

  • Neubert D, Wojtczak AB, Lehninger AL (1962) Purification and enzymatic identity of mitochondrial contraction-factors I and II. Proc Natl Acad Sci USA 48:1651–1658. doi:10.1073/pnas.48.9.1651

    Article  PubMed  CAS  Google Scholar 

  • Nulton-Persson AC, Szweda LI (2001) Modulation of mitochondrial function by hydrogen peroxide. J Biol Chem 276:23357–23361. doi:10.1074/jbc.M100320200

    Article  PubMed  CAS  Google Scholar 

  • Ozawa T (1997) Genetic and functional changes in mitochondria associated with aging. Physiol Rev 77:425–464

    PubMed  CAS  Google Scholar 

  • Paradies G, Ruggiero FM, Petrosillo G, Quagliariello E (1993) Age-dependent decrease in the cytochrome c oxidase activity and changes in phospholipids in rat heart mitochondria. Arch Gerontol Geriatr 16:263–272. doi:10.1016/0167-4943(93)90037-I

    Article  PubMed  CAS  Google Scholar 

  • Paterson RRM (2006) Ganoderma—a therapeutic fungal biofactory. Phytochemistry 67:1985–2001. doi:10.1016/j.phytochem.2006.07.004

    Article  PubMed  CAS  Google Scholar 

  • Pillai GT, Nair CKK, Janardhanan KK (2008) Polysaccharides isolated from Ganoderma lucidum occurring in Southern parts of India, protects radiation induced damages both in vitro and in vivo. Environ Toxicol Pharmacol 26:80–85. doi:10.1016/j.etap.2008.02.004

    Article  CAS  Google Scholar 

  • Reed LJ, Mukherjee BB (1969) α-Ketoglutarate dehydrogenase complex from Escheriachia coli. Methods Enzymol 13:55–61. doi:10.1016/0076-6879(69)13016-5

    Article  CAS  Google Scholar 

  • Ritcher C, Park JW, Ames BN (1998) Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci USA 8:6465–6467

    Google Scholar 

  • Salvioli S, Bonafe M, Capri M, Monti D, Franceschi C (2001) Mitochondria, aging and longevity—a new perspective. FEBS Lett 492:9–13. doi:10.1016/S0014-5793(01)02199-8

    Article  PubMed  CAS  Google Scholar 

  • Sastre J, Pallardo FV, Pla R, Pellin A, Juan G, O’Connor JE, Estrela JM, Miquel J, Vina J (1996) Aging of the liver: age-associated mitochondrial damage in intact hepatocytes. Hepatology 24:1199–1205. doi:10.1002/hep.510240536

    Article  PubMed  CAS  Google Scholar 

  • Sastre J, Pallardo FV, Vina J (2003) The role of mitochondrial oxidative stress in aging. Free Radic Biol Med 35:1–8. doi:10.1016/S0891-5849(03)00184-9

    Article  PubMed  CAS  Google Scholar 

  • Savitha S, Pannerselvam C (2006) Mitochondrial membrane damage during aging process in rat heart: potential efficacy of l-carnitine and DL-α-lipoic acid. Mech Ageing Dev 127:349–355. doi:10.1016/j.mad.2005.12.004

    Article  PubMed  CAS  Google Scholar 

  • Savitha S, Sivarajan K, Haripriya D, Kokilavani V, Panneerselvam C (2005) Efficacy of levo carnitine and alpha lipoic acid in ameliorating the decline in mitochondrial enzymes during aging. Clin Nutr 24:794–800. doi:10.1016/j.clnu.2005.04.005

    Article  PubMed  CAS  Google Scholar 

  • Schapira AH (1999) Mitochondrial involvement in Parkinson’s disease, Huntington’s disease, hereditary spastic paraplegia and Friedreich’s ataxia. Biochim Biophys Acta 1410:159–170. doi:10.1016/S0005-2728(98)00164-9

    Article  PubMed  CAS  Google Scholar 

  • Sheena N, Ajith TA, Janardhanan KK (2003a) Prevention of nephrotoxicity induced by the anticancer drug cisplatin, using Ganoderma lucidum, a medicinal mushroom occurring in South India. Curr Sci 85:478–482

    CAS  Google Scholar 

  • Sheena N, Ajith TA, Janardhanan KK (2003b) Anti- inflammatory and antinociceptive activities of Ganoderma lucidum occurring in South India. Pharmceutical Biol 41:4301–4304

    Google Scholar 

  • Shiao MS, Lee KR, Lin LJ, Wang CT (1994) Natural products and biological activities of the Chinese medical fungus, Ganoderma lucidum. In: Ho CT, Osawa T, Huang MT, Rosen RT (eds) Food phytochemicals for cancer prevention. Part II: Teas, spices and herbs. American Chemical Society Press, Washington, DC, pp 342–354

  • Sohal RS, Weindruch R (1996) Oxidative stress, caloric restriction and aging. Science 273:59–63. doi:10.1126/science.273.5271.59

    Article  PubMed  CAS  Google Scholar 

  • Wallace DC (1992) Mitochondrial genetics: a paradigm for aging and degenerative diseases? Science 256:628–632. doi:10.1126/science.1533953

    Article  PubMed  CAS  Google Scholar 

  • Wang M, Chan Y, Wu C, Wong Y, Hosoda K, Yamamoto S (2004) Effects of Ganoderma on aging and learning and memory ability in senescence accelerated mice. Int Congr Ser 1260:399–404. doi:10.1016/S0531-5131(03)01682-0

    Article  CAS  Google Scholar 

  • Wei YH (1992) Mitochondrial DNA alterations as ageing-associated molecular events. Mutat Res 275:145–155

    PubMed  CAS  Google Scholar 

  • Wei YH (1998) Oxidative stress and mitochondrial DNA mutations in human aging. Proc Soc Exp Biol Med 217:53–63

    PubMed  CAS  Google Scholar 

  • You YH, Lin ZB (2003) Antioxidant effect of Ganoderma polysaccharide peptide. Yaoxue Xuebao 38:85–88

    CAS  Google Scholar 

  • Zarchin N, Meilin S, Rifkind J, Mayevsky A (2002) Effect of aging on brain energy-metabolism. Comp Biochem Physiol Part A Mol Integr Physiol 132:117–120. doi:10.1016/S1095-6433(01)00537-2

    Article  Google Scholar 

  • Zhang Y, Marcillat O, Giulivi C, Ernster L, Davies KJA (1990) The oxidative inactivation of mitochondrial electron transport chain components and ATPase. J Biol Chem 265:16330–16336

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Janardhanan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sudheesh, N.P., Ajith, T.A. & Janardhanan, K.K. Ganoderma lucidum (Fr.) P. Karst enhances activities of heart mitochondrial enzymes and respiratory chain complexes in the aged rat. Biogerontology 10, 627–636 (2009). https://doi.org/10.1007/s10522-008-9208-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-008-9208-9

Keywords

Navigation