Skip to main content

Advertisement

Log in

Effect of 40% restriction of dietary amino acids (except methionine) on mitochondrial oxidative stress and biogenesis, AIF and SIRT1 in rat liver

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Previous studies have shown that the decrease in mitochondrial reactive oxygen species (mitROS) generation and oxidative damage to mitochondrial DNA (mtDNA) that occurs during life extending dietary restriction also occurs during protein or methionine restriction, whereas it does not take place during carbohydrate or lipid restriction. In order to study the possible effects of other amino acids, in this investigation all the dietary amino acids, except methionine, were restricted by 40% in male Wistar rats (RESTAAS group). After 6–7 weeks, experimental parameters were measured in the liver. Amino acid restriction did not change the levels of the methionine metabolites S-adenosylmethionine and S-adenosylhomocysteine, mitochondrial oxygen consumption and ROS generation, oxidative damage to mtDNA, amounts of the respiratory complexes I–IV, and the mitochondrial biogenesis factors PGC-1α and NRF-2. On the other hand, adenylate energy charge, mitochondrial protein oxidation, lipooxidation and glycooxidation, the degree of mitochondrial fatty acid unsaturation, and the amount of the apoptosis inducing factor (AIF) were decreased in the RESTAAS group. Amino acid restriction also increased SIRT1 protein. These results, together with previous ones, strongly suggest that the decrease in mitROS generation and oxidative damage to mtDNA that occurs during dietary restriction is due to restriction of a single aminoacid: methionine. They also show for the first time that restriction of dietary amino acids different from methionine decreases mitochondrial protein oxidative modification and AIF, and increases SIRT1, in rat liver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AIF:

Apoptosis inducing factor

AASA:

Aminoadipic semialdehyde in proteins

CEL:

Carboxyethyl-lysine in proteins

CML:

Carboxymethyl-lysine in proteins

DBI:

Double bond index

mtDNA:

Mitochondrial DNA

NRF-2:

nuclear respiratory factor-2

GSA:

Glutamic semialdehyde in proteins

MDAL:

Malondialdehyde-lysine in proteins

PGC-1α:

PPARγ Coactivator 1α

PI:

Peroxidizability index

ROS:

Reactive oxygen species

SAM:

S-Adenosylmethionine

SAH:

S-Adenosylhomocysteine

SIRT1:

Sirtuin 1

8-oxodG:

8-Oxo-7,8-dihydro-2′ deoxyguanosine

References

  • Asunción JG, Millan A, Pla R, Bruseghini L, Esteras A, Pallardo FV, Sastre J, Viña J (1996) Mitochondrial glutathione oxidation correlates with age-associated oxidative damage to mitochondrial DNA. FASEB J 10:333–338

    PubMed  Google Scholar 

  • Ayala V, Naudi A, Sanz A, Caro P, Portero-Otin M, Barja G, Pamplona R (2007) Dietary protein restriction decreases oxidative protein damage, peroxidizability index, and mitochondrial complex I content in rat liver. J Gerontol 62A:352–360

    CAS  Google Scholar 

  • Barja G (2002) The quantitative measurement of H2O2 generation in isolated mitochondria. J Bioenerg Biomembr 34:227–233. doi:10.1023/A:1016039604958

    Article  PubMed  CAS  Google Scholar 

  • Barja G (2004a) Free radicals and aging. Trends Neurosci 27:595–600. doi:10.1016/j.tins.2004.07.005

    Article  PubMed  CAS  Google Scholar 

  • Barja G (2004b) Aging in vertebrates and the effect of caloric restriction: a mitochondrial free radical production-DNA damage mechanism? Biol Rev Camb Philos Soc 79:235–251. doi:10.1017/S1464793103006213

    Article  PubMed  Google Scholar 

  • Beckman KB, Ames B (1998) The free radical theory of aging matures. Physiol Rev 78:547–581

    PubMed  CAS  Google Scholar 

  • Boily G, Seifert EL, Bevilacqua L, He XH, Sabourin G, Estey C, Moffat C, Crawford S, Saliba S, Jardine K, Xuan J, Evans M, Harper ME, McBurney MW (2008) SirT1 regulates energy metabolism and response to caloric restriction in mice. PLoS ONE 3:e1759

    Article  PubMed  CAS  Google Scholar 

  • Caro P, Gomez G, López-Torres M, Sánchez I, Naudí A, Jove M, Pamplona R, Barja G (2008) 40% and 80% methionine restriction decrease mitochondrial ROS generation and oxidative stress in rat liver. Biogerontology 9:183–196. doi:10.1007/s10522-008-9130-1

    Article  PubMed  CAS  Google Scholar 

  • Chen D, Guarente L (2007) SIR2: a potential target for caloric restriction mimetics. Trends Mol Med 13:64–71. doi:10.1016/j.molmed.2006.12.004

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein JD, Martin JJ (1986) Methionine metabolism in mammals. Adaptation to methionine excess. J Biol Chem 261:1582–1587

    PubMed  CAS  Google Scholar 

  • Frye RA (2000) Phylogenetic classification of procariotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun 273:793–798. doi:10.1006/bbrc.2000.3000

    Article  PubMed  CAS  Google Scholar 

  • Gredilla R, Barja G (2005) Caloric restriction, aging and oxidative stress. Endocrinology 146:3713–3717. doi:10.1210/en.2005-0378

    Article  PubMed  CAS  Google Scholar 

  • Holman RT (1954) Autoxidation of fats and related substances. In: Holman RT, Lundberg WO, Malkin T (eds) Progress in chemistry of fats and other lipids, vol 2. Pergamon Press, London, pp 51–98

    Google Scholar 

  • Hulbert AJ, Pamplona R, Buffenstein R, Buttemer WA (2007) Life and death: metabolic rate, membrane composition and life span of animals. Physiol Rev 87:1175–1213. doi:10.1152/physrev.00047.2006

    Article  PubMed  CAS  Google Scholar 

  • Kilberg MS, Pan YX, Chen H (2005) Nutritional control of gene expression: how mammalian cells respond to amino acid limitation. Annu Rev Nutr 25:59–85. doi:10.1146/annurev.nutr.24.012003.132145

    Article  PubMed  CAS  Google Scholar 

  • Latorre A, Moya A, Ayala A (1986) Evolution of mitochondrial DNA in Drosophila suboscura. Proc Natl Acad Sci USA 83:8649–8653. doi:10.1073/pnas.83.22.8649

    Article  PubMed  CAS  Google Scholar 

  • Loft S, Poulsen HE (1999) Markers of oxidative damage to DNA: antioxidants and molecular damage. Methods Enzymol 300:166–184. doi:10.1016/S0076-6879(99)00124-X

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Torres M, Gredilla R, Sanz A, Barja G (2002) Influence of aging and long-term caloric restriction on oxygen radical generation and oxidative DNA damage in rat liver mitochondria. Free Radic Biol Med 32:882–889. doi:10.1016/S0891-5849(02)00773-6

    Article  PubMed  CAS  Google Scholar 

  • Miller RA, Buehner G, Chang Y, Harper JM, Sigler R (2005) Methionine deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance. Aging Cell 4:119–125. doi:10.1111/j.1474-9726.2005.00152.x

    Article  PubMed  CAS  Google Scholar 

  • Muller FL, Lustgarten MS, Jang Y, Richardson A, Van Remmen H (2007) Trends in oxidative aging theories. Free Radic Biol Med 43:477–503. doi:10.1016/j.freeradbiomed.2007.03.034

    Article  PubMed  CAS  Google Scholar 

  • Naudi A, Caro P, Jove M, Gomez J, Boada J, Ayala V, Portero-Otín M, Barja G, Pamplona R (2007) Methionine restriction decreases endogenous oxidative molecular damage and increases mitochondrial biogénesis and uncoupling protein 4 in rat brain. Rejuvenation Res 10:473–484. doi:10.1089/rej.2007.0538

    Article  PubMed  Google Scholar 

  • Nemoto S, Fergusson MM, Finkel T (2005) SIRT1 functionally interacts with the metabolic regulador and transcriptional coactivator PGC-1α. J Biol Chem 280:16456–16460. doi:10.1074/jbc.M501485200

    Article  PubMed  CAS  Google Scholar 

  • Nisoli E, Tonello C, Cardile A, Cozzi V, Bracale R, Tedesco L, Falcone S, Valerio A, Cantoni O, Clementi E, Moncada S, Carruba MO (2005) Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 310:314–317. doi:10.1126/science.1117728

    Article  PubMed  CAS  Google Scholar 

  • Pamplona R, Barja G (2006) Mitochondrial oxidative stress, aging and caloric restriction: the protein and methionine connection. Biochim Biophys Acta 1757:496–508. doi:10.1016/j.bbabio.2006.01.009

    Article  PubMed  CAS  Google Scholar 

  • Pamplona R, Barja G, Portero-Otín M (2002a) Membrane fatty acid unsaturation, protection against oxidative stress, and maximum life span: a homeoviscous-longevity adaptation. Ann N Y Acad Sci 959:475–490

    Article  PubMed  CAS  Google Scholar 

  • Pamplona R, Portero-Otín M, Requena J, Gredilla R, Barja G (2002b) Oxidative, glycoxidative and lipoxidative damage to rat heart mitochondrial proteins is lower after four months of caloric restriction than in age-matched controls. Mech Ageing Dev 123:1437–1446. doi:10.1016/S0047-6374(02)00076-3

    Article  PubMed  CAS  Google Scholar 

  • Pamplona R, Dalfo E, Ayala V, Bellmunt MJ, Prat J, Ferrer I, Portero-Otín M (2005) Proteins in human brain cortex are modified by oxidation, glycoxidation, and lipoxidation. Effects of Alzheimer disease and identification of lipoxidation targets. J Biol Chem 280:21522–21530. doi:10.1074/jbc.M502255200

    Article  PubMed  CAS  Google Scholar 

  • Perna AF, Ingrosso D, De Santo NG, Galletti P, Zappia V (1995) Mechanism of erythrocyte accumulation of methylation inhibitor S-adenosylhomocysteine in uremia. Kidney Int 47:247–253. doi:10.1038/ki.1995.31

    Article  PubMed  CAS  Google Scholar 

  • Porter AG, Urbano GL (2006) Does apoptosis-inducing factor (AIF) have both life and death functions in cells? Bioesssays 28:834–843. doi:10.1002/bies.20444

    Article  CAS  Google Scholar 

  • Richie JP Jr, Leutzinger Y, Parthasarathy S, Malloy V, Orentreich N, Zimmerman JA (1994) Methionine restriction increases blood glutathione and longevity in F344 rats. FASEB J 8:1302–1307

    PubMed  CAS  Google Scholar 

  • Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P (2005) Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature 434:113–118. doi:10.1038/nature03354

    Article  PubMed  CAS  Google Scholar 

  • Rodgers JT, Lerin C, Gerhart-Hines Z, Puigserver P (2008) Metabolic adaptations through the PGC-1α and SIRT1 pathways. FEBS Lett 582:46–53. doi:10.1016/j.febslet.2007.11.034

    Article  PubMed  CAS  Google Scholar 

  • Rogina B, Helfand SL (2004) Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci USA 101:15998–16003. doi:10.1073/pnas.0404184101

    Article  PubMed  CAS  Google Scholar 

  • Ryan MT, Hoogenraad NJ (2007) Mitochondrial-nuclear communications. Annu Rev Biochem 76:701–722. doi:10.1146/annurev.biochem.76.052305.091720

    Article  PubMed  CAS  Google Scholar 

  • Sanz A, Barja G (2006) Estimation of the rate of production of oxygen radicals by mitochondria. In: Conn M (ed) Handbook of models for human aging. Academic Press, New York, pp 183–189

    Chapter  Google Scholar 

  • Sanz A, Caro P, Barja G (2004) Protein restriction without strong caloric restriction decreases mitochondrial oxygen radical production and oxidative DNA damage in rat liver. J Bioenerg Biomembr 36:545–552. doi:10.1007/s10863-004-9001-7

    Article  PubMed  CAS  Google Scholar 

  • Sanz A, Caro P, Ayala V, Portero-Otin M, Pamplona R, Barja G (2006a) Methionine restriction decreases mitochondrial oxygen radical generation and leak as well as oxidative damage to mitochondrial DNA and proteins. FASEB J 20:1064–1073. doi:10.1096/fj.05-5568com

    Article  PubMed  CAS  Google Scholar 

  • Sanz A, Caro P, Gómez J, Barja G (2006b) Effect of lipid restriction on mitochondrial free radical production and oxidative DNA damage. Ann N Y Acad Sci 1067:200–209. doi:10.1196/annals.1354.024

    Article  PubMed  CAS  Google Scholar 

  • Sanz A, Gómez J, Caro P, Barja G (2006c) Carbohydrate restriction does not change mitochondrial free radical generation and oxidative DNA damage. J Bioenerg Biomembr 38:327–333. doi:10.1007/s10863-006-9051-0

    Article  PubMed  CAS  Google Scholar 

  • Stocchi V, Cucchiarini L, Magnani M, Chiarantini L, Palma P, Crescentini G (1985) Simultaneous extraction and reverse-phase high-performance liquid chromatographic determination of adenine and pyridine nucleotides in human red blood cells. Anal Biochem 146:118–124. doi:10.1016/0003-2697(85)90405-1

    Article  PubMed  CAS  Google Scholar 

  • Vahsen N, Candé C, Brière JJ, Bénit P, Joza N, Larochette N, Mastroberardino PG, Pequignot MO, Casares N, Lazar V, Feraud O, Debili N, Wissing S, Engelhardt S, Madeo F, Piacentini M, Penninger JM, Schägger H, Rustin P, Kroemer G (2004) AIF deficiency compromises oxidative phosphorylation. EMBO J 23:4679–4689. doi:10.1038/sj.emboj.7600461

    Article  PubMed  CAS  Google Scholar 

  • Vaquero A, Scher M, Lee D, Erdjument-Bromage H, Tempst P, Reingberg D (2004) Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatic. Mol Cell 16:93–105. doi:10.1016/j.molcel.2004.08.031

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Kramer PM, Yang S, Pereira MA, Tao L (2001) Reversed-phase high-performance liquid chromatography procedure for the simultaneous determination of S-adenosyl-l-methionine and S-adenosyl-l-homocysteine in mouse liver and the effect of methionine on their concentrations. J Chromatogr B Biomed Sci Appl 762:59–65. doi:10.1016/S0378-4347(01)00341-3

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by I + D grants from the Spanish Ministry of Education and Science (BFU2006-14495/BFI), the Spanish Ministry of Health (ISCIII, Red de Envejecimiento y Fragilidad, RD06/0013/0012), the Generalitat of Catalunya (2005SGR00101), and “La Caixa” Foundation to R.P.; and from the Ministry of Education and Science (BFU2005-02584) and from CAM/UCM-GR74/07 (CCG07-UCM/BIO-2648) to G.B. P. Caro and J. Gómez received predoctoral fellowships from the Ministry of Education and Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Barja.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caro, P., Gomez, J., Sanchez, I. et al. Effect of 40% restriction of dietary amino acids (except methionine) on mitochondrial oxidative stress and biogenesis, AIF and SIRT1 in rat liver. Biogerontology 10, 579–592 (2009). https://doi.org/10.1007/s10522-008-9200-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-008-9200-4

Keywords

Navigation