Skip to main content

Advertisement

Log in

Curcumin counteracts the aluminium-induced ageing-related alterations in oxidative stress, Na+, K+ ATPase and protein kinase C in adult and old rat brain regions

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

This study investigated the effect of curcumin on aluminium-induced alterations in ageing-related parameters: lipid peroxidation, superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione-s-transferase (GST), protein kinase C (PKC), Na+, K+-adenosine triphosphatase (Na+, K+-ATPase) and acetylcholinesterase (AChE) in the cerebral cortex and hippocampus of the brain of 10- and 24-month-old rats. Measurements taken from aluminium-fed rats were compared with those from rats in which curcumin and aluminium were co-administered. In aluminium-treated rats the levels of lipid peroxidation, PKC and AChE were enhanced while the activities of SOD, GPx, GST and Na+, K+-ATPase were significantly decreased in both the brain regions of both age-groups. In animals co-administered with curcumin and aluminium, the levels of lipid peroxidation, activities of PKC and AChE were significantly lowered while the activities of SOD, GPx, GST and Na+, K+-ATPase were significantly enhanced in the two brain regions studied indicating curcumin’s protective effects against aluminium toxicity. Though the magnitudes of curcumin-induced alterations varied in young and old animals, the results of the present study also demonstrated that curcumin exerts a protective effect against aluminium-induced elevation of ageing-related changes by modulating the extent of oxidative stress (by upregulating the activities of antioxidant enzymes) and by regulating the activities of Na+, K+ ATPase, PKC and AChE. Therefore, it is suggested that curcumin counters aluminium-induced enhancement in ageing-related processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aggarwal BB, Harikumar KB (2008) Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neuro-degenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol. doi:10.1016/j.biocel.2008.06.010

    PubMed  Google Scholar 

  • Aggarwal BB, Bhatt ID, Ichikawa H, Ahn KS, Sethi G, Sandur SK et al (2006) Curcumin-biological and medicinal properties. Turmeric: the genus curcumin. Taylor & Francis, London, pp 279–368

    Google Scholar 

  • Anane R, Bonini M, Grafeille J-M, Creppy EE (1995) Bioaccumulation of water soluble aluminium chloride in the hippocampus after transdermal uptake in mice. Arch Toxicol 69:568–571. doi:10.1007/s002040050214

    PubMed  CAS  Google Scholar 

  • Awasthi S, Pandya U, Singhal SS, Lin JT, Thiviyanathan V, Seifert WE Jr, Awasthi YC, Ansari GAS (2000) Curcumin-glutathione interactions and the role of human glutathione s-tranferase P1-1. Chem Biol Interact 128:19–38. doi:10.1016/S0009-2797(00)00185-X

    PubMed  CAS  Google Scholar 

  • Bala K, Tripathy BC, Sharma D (2006) Neuroprotective and anti-ageing effects of curcumin in aged rat brain regions. Biogerontology 7:81–89. doi:10.1007/s10522-006-6495-x

    PubMed  CAS  Google Scholar 

  • Barcley LR, Vinqvist MR, Mukai K, Goto H, Hashimoto Y, Tokunaga A, Uno H (2000) On the antioxidant mechanism of curcumin: classical methods are needed to determine antioxidant mechanism and activity. Org Lett 7:2841–2843. doi:10.1021/ol000173t

    Google Scholar 

  • Bastianetto S, Brouillette J, Quirion R (2007) Neuroprotective effects of natural products: interaction with intracellular kinases, amyloid peptides and a possible role for transthyretin. Neurochem Res 32:1720–1725. doi:10.1007/s11064-007-9333-x

    PubMed  CAS  Google Scholar 

  • Battaini F, Pascale A (2005) Protein kinase C signal transduction regulation in physiological and pathological aging. Ann N Y Acad Sci 1057:177–192. doi:10.1196/annals.1356.011

    PubMed  CAS  Google Scholar 

  • Bolla KL, Briefil G, Spector D, Schwartz BS, Wieler L, Herron J, Gimnez L (1992) Neurocognitive effect of aluminium. Arch Neurol 49:1021–1026

    PubMed  CAS  Google Scholar 

  • Brichall JD, Chappell JS (1988) Aluminium, chemical physiology and Alzheimer’s disease. Lancet 2:1008–1010. doi:10.1016/S0140-6736(88)90754-4

    Google Scholar 

  • Byus CV, Lundak RL, Fletcher RM, Adey WR (1984) Alterations in protein kinase activity following exposure of cultured human lymphocytes to modulate microwave fields. Bioelectromagnetics 5:341–351. doi:10.1002/bem.2250050307

    PubMed  CAS  Google Scholar 

  • Calabrese V, Butterfield DA, Stella AM (2003) Nutritional antioxidants and the heme oxygenase pathway of stress tolerance: novel targets for neuroprotection in Alzheimer’s disease. Ital J Biochem 52:177–181

    PubMed  CAS  Google Scholar 

  • Chainy GBN, Sahoo A, Swain C (1993) Effect of aluminium on lipid proxidation of cerebral hemisphere of chick. Bull Environ Contam Toxicol 50:85–91. doi:10.1007/BF00196545

    PubMed  CAS  Google Scholar 

  • Chakravarty AK, Yasmin H (2008) Free radical scavenging and nitric oxide synthase activation in murine lymphocytes and Erhlrich carcinoma cells treated with ethanolic extract of turmeric. Proc Nat Acad Sci India (Sec B) 78 Pt I:37–44

  • Crambert G, Fuzesi M, Garty H, Karlish S, Greeing K (2002) Phospholemman (FXYDI) associate with Na+, K+-ATPase and regulate its transport properties. Proc Natl Acad Sci USA 99:11476–11481. doi:10.1073/pnas.182267299

    PubMed  CAS  Google Scholar 

  • de Roberties E, de Lores arnaiz GR, Salganicoff L (1963) Isolation of synaptic vesicles and structural organization of acetylcholine system within brain nerve endings. J Neurochem 10:225–235. doi:10.1111/j.1471-4159.1963.tb05038.x

    Google Scholar 

  • Deloncle R, Guillard O, Clanet F, Courois P, Piriou A (1990) Aluminium transfer as glutamate complex through blood brain barrier. Possible implication in dialysis encephalopathy. Biol Trace Elem Res 25:39–45

    PubMed  CAS  Google Scholar 

  • Deloncle R, Guillard O, Huguet F, Clanet F (1995) Modification of the blood brain barrier through chronic intoxication by aluminium glutamate: possible role. Biol Trace Elem Res 47:227–233. doi:10.1007/BF02790121

    PubMed  CAS  Google Scholar 

  • Deloncle R, Huguet F, Fernandez B, Quellard N, Babin PH, Guillard O (2001) Ultrastructural study of rat hippocampus after chronic administration of aluminium l-glutamate: an acceleration of the ageing process. Exp Gerontol 36:231–244. doi:10.1016/S0531-5565(00)00214-X

    PubMed  CAS  Google Scholar 

  • Deodhar SD, Sethi R, Srimal RC (1980) Preliminary study on antirheumatic activity of curcumin (diferuloylmethane). Indian J Med Res 71:601–608

    Google Scholar 

  • Disterhoft JF, Oh MM (2006) Pharmacological and molecular enhancement of learning in aging and Alzheimer’s disease. J Physiol (Paris) 99:180–192. doi:10.1016/j.jphysparis.2005.12.079

    CAS  Google Scholar 

  • Ellman GL, Courtney KD, Andres V Jr, Feather-Stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95. doi:10.1016/0006-2952(61)90145-9

    PubMed  CAS  Google Scholar 

  • Feschenko MS, Donnet C, Wetzel RK, Asinovski NK, Jones LR, Sweadner KJ (2003) Phospholemman, a single-span membrane protein, is an accessory protein of Na+, K+-ATPase in cerebellum and choroid plexus. J Neurosci 23:2161–2169

    PubMed  CAS  Google Scholar 

  • Flohe L, Gunzler WA (1984) Assays of glutathione peroxidase. Methods of Enzymology. Academic Press, New York, pp 114–121

    Google Scholar 

  • Florence AL, Gauthier A, Ward RJ, Crichton RR (1995) Influence of hydroxypyridones and desferrioxamine on the mobilization of aluminium from tissues of aluminium-loaded rats. Neurodegeneration 4:449–455. doi:10.1006/neur.1995.0054

    PubMed  CAS  Google Scholar 

  • Florrence AL, Gauthier A, Ponsar C, Van den Bosch de Aguilar P, Crichton RR (1994) An experimental animal model of aluminium overload. Neurodegeneration 3:315–323

    Google Scholar 

  • Fordycee DE, Wehner JM (1993) Effects of aging on spatial learning and hippocampal protein kinase C in mice. Neurobiol Aging 14:309–317. doi:10.1016/0197-4580(93)90116-S

    Google Scholar 

  • Frautschy SA, Hu W, Kim P, Miller SA, Chu T, Herris-White ME, Cole GM (2001) Phenolic anti-inflammatory antioxidant reversal of a beta-induced cognitive deficits and neuropathology. Neurobiol Aging 22:993–1005. doi:10.1016/S0197-4580(01)00300-1

    PubMed  CAS  Google Scholar 

  • Friedman E, Wang HY (1989) Effect of age on brain cortical protein kinase C and its mediation of 5-hydroxytryptamine release. J Neurochem 52:187–192. doi:10.1111/j.1471-4159.1989.tb10915.x

    PubMed  CAS  Google Scholar 

  • Goel A, Kunnumakkara AB, Aggarwal BB (2008) Curcumin as “Cure cumin”: from kitchen to clinic. Biochem Pharmacol 75:787–809. doi:10.1016/j.bcp.2007.08.016

    PubMed  CAS  Google Scholar 

  • Gomez M, Sanchez DJ, Llobet JM, Corbella J, Domingo JL (1997) Concentration of some essential elements in the brain of aluminium-exposed rats in relation to the age of exposure. Arch Gerontol Geriatr 24:287–294. doi:10.1016/S0167-4943(96)00766-2

    PubMed  CAS  Google Scholar 

  • Gong G-H, Wu Q, Huang X-N, Sun A-S, Shi J-S (2005) Protective effects og Ginko biloba leaf extract on aluminium-induced brain dysfunction in rats. Life Sci 77:140–148. doi:10.1016/j.lfs.2004.10.067

    PubMed  CAS  Google Scholar 

  • Gulya K, Rakonczay P, Kasa J (1990) Cholinotoxic effects of aluminium in rat brain. J Neurochem 54:1020–1026. doi:10.1111/j.1471-4159.1990.tb02352.x

    PubMed  CAS  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione s-transferases. J Biol Chem 249:7130–7139

    PubMed  CAS  Google Scholar 

  • Hetherington A, Trewavas A (1982) Calcium-dependent protein kinase in pea shoot membranes. FEBS Lett 145:67–71. doi:10.1016/0014-5793(82)81208-8

    CAS  Google Scholar 

  • Igwe OJ, Filla MB (1995) Regulation of phosphatidylinositide transduction system in the rat spinal cord during aging. Neuroscience 69:1239–1251. doi:10.1016/0306-4522(95)00298-W

    PubMed  CAS  Google Scholar 

  • Jacqmin H, Commenges D, Latenneur L, Barberger-Gateau JF (1994) Component of drinking water and risk of cognitive impairment in the elderly. Am J Epidemiol 139:48–57

    PubMed  CAS  Google Scholar 

  • Jovanovic SV, Boone CW, Steenken S, Trinoga M, Kaskey RB (2001) How curcumin works preferentially with water soluble antioxidants. J Am Chem Soc 123:3064–3068. doi:10.1021/ja003823x

    PubMed  CAS  Google Scholar 

  • Julka D, Gill KD (1996) Altered calcium homeostasis: possible mechanisms of aluminium-induced neurotoxicity. Biochim Biophys Acta 17:47–54

    Google Scholar 

  • Kabir N, Schaefer AW, Nakhost A, Sossin WS, Forscher P (2001) Protein kinase C activation promotes microtubule advance in neural growth cones by increasing average microtubule growth lifetimes. J Cell Biol 152:1033–1043. doi:10.1083/jcb.152.5.1033

    PubMed  CAS  Google Scholar 

  • Kaizer RR, Correa MC, Spanevello RM, Morsch VM, Mazzanti CM, Goncalves JF, Schetinger MRC (2005) Acetylcholinesterase activation and enhanced lipid peroxidation after long-term exposure to low levels of aluminium on different mouse brain regions. J Inorg Biochem 99:1865–1870. doi:10.1016/j.jinorgbio.2005.06.015

    PubMed  CAS  Google Scholar 

  • Kalpana C, Menon VP (2004) Modulatory effect of curcumin on lipid peroxidation and antioxidant status during nicotine-induced toxicity. Pol J Pharmacol 56:581–586

    PubMed  CAS  Google Scholar 

  • Katsuyama H, Saijoh K, Inoue Y, Sumino K (1989) The interaction of aluminium with soluble protein kinase C from mouse brain. Arch Toxicol 63:474–478. doi:10.1007/BF00316451

    PubMed  CAS  Google Scholar 

  • Kaul S, Krishnakanth TP (1994) Effect of retinal deficiency and curcumin or turmeric feeding on brain Na+, K+-ATPase adenosine triphosphate activity. Mol Cell Biochem 137:101–107. doi:10.1007/BF00944071

    PubMed  CAS  Google Scholar 

  • Kaur J, Sharma D, Singh R (1998) Regional effects of ageing on Na+,K(+)- ATPase activity in rat brain and correlation with multiple unit action potentials and lipid peroxidation. Indian J Biochem Biophys 35(6):364–371

    PubMed  CAS  Google Scholar 

  • Kaur J, Sharma D, Singh R (2001) Acetyl-l-cranitine enhances Na+, K+ ATPase, glutathione-s-transferase and multiple unit activity and reduces lipid peroxidation and lipofuscin concentration in aged rat brain regions. Neurosci Lett 301:1–4. doi:10.1016/S0304-3940(01)01576-2

    PubMed  CAS  Google Scholar 

  • Kaur J, Singh S, Sharma D, Singh R (2003a) Aluminium-induced enhancement of ageing-related parameters in rat brain regions. Indian J Biochem Biophys 40:330–339

    CAS  Google Scholar 

  • Kaur J, Singh S, Sharma D, Singh R (2003b) Neurostimualtory and antioxidative effects of l-deprenyl in aged rat brain regions. Biogerontology 4:105–111. doi:10.1023/A:1023351904840

    PubMed  CAS  Google Scholar 

  • Khare CP (2007) Indian medicinal plants—an illustrated dictionary. Springer, New Delhi, pp 286–287

    Google Scholar 

  • Kubo T, Hagiwara Y (2005) Posterior hypothalamus cholinergic stimulation-induced activation of anterior hypothalamic area neurons is enhanced in spontaneously hypersensitive rats. Brain Res 1061:36–41. doi:10.1016/j.brainres.2005.08.054

    PubMed  CAS  Google Scholar 

  • Lal B, Gupta A, Murthy RC, Ali MM, Chanda SV (1993) Aluminum ingestion alters behavior and some neurochemicals in rats. Indian J Exp Biol 31:30–35

    PubMed  CAS  Google Scholar 

  • Laterra J, Bressler JP, Indurti RR, Belloni-Olivi L, Goldstein GW (1992) Inhibition of astroglia-induced endothelial differentiation by inorganic lead: a role for protein kinase C. Proc Natl Acad Sci USA 89:10748–10752. doi:10.1073/pnas.89.22.10748

    PubMed  CAS  Google Scholar 

  • Logan-Smith MJ, Lockyer PJ, East JM, Lee AG (2001) Curcumin a molecule that inhibits the Ca2+-ATPase of sarcoplasmic reticulum but increases the rate of accumulation of Ca2+. J Biol Chem 276:46905–469011. doi:10.1074/jbc.M108778200

    PubMed  CAS  Google Scholar 

  • Lowry OH, Rosenborough NJ, Farr AL (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Markesbery WR, Ehmann WD, Alauddin M, Hossain TI (1984) Brain trace element concentrations in ageing. Neurobiol Aging 5:19–28. doi:10.1016/0197-4580(84)90081-2

    PubMed  CAS  Google Scholar 

  • Marklund S, Marklund G (1974) Involvement of the super oxide anion radical in the autooxidation of pyrogallol and convenient assay for super oxide dismutase. Eur J Biochem 47:469–474. doi:10.1111/j.1432-1033.1974.tb03714.x

    PubMed  CAS  Google Scholar 

  • Markovac J, Goldstein GW (1988) Picomolar concentration of lead stimulate brain protein kinase C. Nature 334:71–73

    PubMed  CAS  Google Scholar 

  • Martin-Aragno S, Benedi JM, Villar AM (1997) Modification of antioxidant capacity and lipid peroxidation in mice under fraxetin treatment. J Pharm Pharmacol 49:49–52

    Google Scholar 

  • Mattson MP (1998) Modification of ion homeostasis by lipid peroxidation: role of neuronal degeneration and adaptive plasticity. Trends Neurosci 21:53–57. doi:10.1016/S0166-2236(97)01188-0

    PubMed  CAS  Google Scholar 

  • Mc Dermott JR, Smith AI, Iqbal K, Wisniewski HM (1979) Brain aluminium in ageing and Alzheimer’s disease. Neurology 29:809–814

    CAS  Google Scholar 

  • Mclaughlin AGI, Kazantis G, King E, Teare D, Porter RJ, Owen P (1962) Pulmonary fibrosis and encephalopathy associated with the inhalation of aluminium dust. Br J Ind Med 19:253–263

    PubMed  CAS  Google Scholar 

  • Mukhopadhyay A, Basu N, Ghatak N, Gujral PK (1982) Anti-inflammatory and irritant activities of curcumin analogues in rats. Agents Actions 12:508–515. doi:10.1007/BF01965935

    PubMed  CAS  Google Scholar 

  • Nakamura S, Ishihara T (1989) Region selective increase in activities of CNS cholinergic marker enzymes during learning of memory task in aged rats. Pharmacol Biochem Behav 34:805–810. doi:10.1016/0091-3057(89)90278-5

    PubMed  CAS  Google Scholar 

  • Nehru B, Bhalla P (2006) Reversal of an aluminium-induced alteration in redox status in different regions of rat brain by administration of centrophenoxine. Mol Cell Biochem 290:185–191. doi:10.1007/s11010-006-9186-7

    PubMed  CAS  Google Scholar 

  • Nishizuka Y (1986) Studies and perspectives of protein kinase C. Science 233:305–312. doi:10.1126/science.3014651

    PubMed  CAS  Google Scholar 

  • Okhawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxide in animal tissue by thiobarbituric acid reaction. Anal Biochem 95:351–358. doi:10.1016/0003-2697(79)90738-3

    Google Scholar 

  • Osawa T, Kato Y (2005) Protective role of antioxidative food factors in oxidative stress caused by hyperglycemia. Ann N Y Acad Sci 1043:440–451. doi:10.1196/annals.1333.050

    PubMed  CAS  Google Scholar 

  • Pascale A, Amadio M, Govoni S, Battaini F (2007) The aging brain, a key for the future: the protein kinase C involvement. Pharmacol Res 55:560–569. doi:10.1016/j.phrs.2007.04.013

    PubMed  CAS  Google Scholar 

  • Patil TN, Srinivasan M (1971) Hypocholesteremic effect of curcumin in induced-hypercholesteremic rats. Indian J Exp Biol 9:167–169

    PubMed  CAS  Google Scholar 

  • Paulraj R, Behari J (2004) Radio frequency radiation effects on protein kinase C activity in rats’ brain. Mutat Res 545:127–130. doi:10.1016/S0027-5107(03)00113-1

    PubMed  CAS  Google Scholar 

  • Piper JT, Singhal SS, Salameh MS, Torman RT, Awasthi YC, Awasthi S (1998) Mechanism of anticarcinogenic properties of curcumin: the effect of curcumin on glutathione linked detoxification enzyme in rat liver. Int J Biochem Cell Biol 30:445–456. doi:10.1016/S1357-2725(98)00015-6

    PubMed  CAS  Google Scholar 

  • Proven SD, Yokel RA (1992) Aluminium inhibits glutamate release from transverse rat hippocampal slices: role of G protein, Ca channels and protein kinase C. Neurotoxicology 13:1313–1420

    Google Scholar 

  • Rajakumar DV, Rao MN (1994) Antioxidant properties of dehydrozingerone and curcumin in rat brain homogenates. Mol Cell Biochem 140:73–79. doi:10.1007/BF00928368

    PubMed  CAS  Google Scholar 

  • Rajkrishnan V, Vishwanathan P, Rajasekharan KN, Menon VP (1999) Neuroprotective role of curcumin from curcuma longa on ethanol—induced brain damage. Phytother Res 13:571–574. doi :10.1002/(SICI)1099-1573(199911)13:7<571::AID-PTR494>3.0.CO;2-7

    Google Scholar 

  • Reddy S, Aggarwal BB (1994) Curcumin is a non-compititive and selective inhibitor of phosphorylase kinase. FEBS Lett 341:19–22. doi:10.1016/0014-5793(94)80232-7

    PubMed  CAS  Google Scholar 

  • Reddy A Ch and Lokesh BR (1994) Studies on the inhibitory effects of curcumin and eugenol on the formation of reactive oxygen species and oxidation of ferrous ions. Mol Cell Biochem 137:1–8. doi:10.1007/BF00926033

  • ReddyA Ch and Lokesh BR (1996) Effect of turmeric (Curcuma longa) on iron—induced lipid per oxidation in the rat liver. Food Chem Toxicol 32:279–283. doi:10.1016/0278-6915(94)90201-1

    Google Scholar 

  • Redhead K, Quinlan GJ, Das RG, Gutteridge JM (1992) Aluminium-adjuvanted vaccines transiently increase aluminium levels in murine brain tissue. Pharmacol Toxicol 70:278–280

    Article  PubMed  CAS  Google Scholar 

  • Rifat AL, Eastwood MR, Crapper-Mclachlan DR (1990) Effect of exposure of minors to aluminium powder. Lancet 336:1162–1165. doi:10.1016/0140-6736(90)92775-D

    PubMed  CAS  Google Scholar 

  • Rodella L, Rezzani R, Lanzi R, Bianchi R (2001) Chronic exposure to aluminium decreases NADPH-diaphorase positive neurons in the rat cerebral cortex. Brain Res 889:229–233. doi:10.1016/S0006-8993(00)03044-4

    PubMed  CAS  Google Scholar 

  • Roskans AJ, Cinnor JR (1990) Aluminium access to the brain: a role for transferrine and its receptors. Proc Natl Acad Sci USA 87:9024–9027. doi:10.1073/pnas.87.22.9024

    Google Scholar 

  • Runyan JD, Moore AN, Dash PK (2005) A role of prefrontal calcium-sensitive protein phoaphatase and kinase activity in working memory. Learn Mem 12:103–110. doi:10.1101/lm.89405

    PubMed  Google Scholar 

  • Sarin S, Julka D, Gill KD (1997) Regional alteration in calcium homeostasis in the primate brain following chronic aluminium exposure. Mol Cell Biochem 168:95–100. doi:10.1023/A:1006891125762

    PubMed  CAS  Google Scholar 

  • Sethi P, Jyoti A, Singh R, Hussain E, Sharma D (2008) Aluminium-induced electrophysiological, biochemical and cognitive modifications in the hippocampus of aging rats. Neurotoxicology. doi:10.1016/j.neuro.2008.08.005

    PubMed  Google Scholar 

  • Sharma D, Singh R (1995) Centrophenoxine activates acetylcholinesterase activity in hippocampus of aged rats. Indian J Exp Biol 33:365–368

    PubMed  CAS  Google Scholar 

  • Sharma D, Maurya AK, Singh R (1993) Age-related decline in the multiple unit action potentials of CA3 neurons of rat hippocampus: correlation with lipid peroxidation and lipofuscin concentration and the effect of centrophenoxine. Neurobiol Aging 14:319–330. doi:10.1016/0197-4580(93)90117-T

    PubMed  CAS  Google Scholar 

  • Shishodia S, Singh T, Chaturvedi MM (2007) Modulation of transcription factors by curcumin. Adv Exp Med Biol 595:127–148. doi:10.1007/978-0-387-46401-5_4

    PubMed  Google Scholar 

  • Sirvio J, Pitkanen A, Paakkonen A (1989) Brain cholinergic enzymes and cortical EEG activity in young and old rats. Comp Biochem Physiol 94:277–283

    CAS  Google Scholar 

  • Sossin WS (2007) Isoform specificity of protein kinase Cs in synaptic plasticity. Learn Mem 14:236–246. doi:10.1101/lm.469707

    PubMed  CAS  Google Scholar 

  • Srimal RC, Dhawan BN (1973) Pharmacology of diferuloyl methane (curcumin), a non-steroidal anti-inflammatory agent. J Pharm Pharmacol 25:447–452

    PubMed  CAS  Google Scholar 

  • Srinivasan M (1972) Effect of curcumin on blood sugar as seen in diabetic subject. Indian J Med Sci 26:269–270

    PubMed  CAS  Google Scholar 

  • Suarez-Fernandez MB, Soldado AB, Sanz-Medal A, Vega JA, Novelli A, Fernandez-Sanchez MT (1999) Aluminium- induced degeneration of astrocytes occur via apoptosis and results in neuronal death. Brain Res 835:125–136. doi:10.1016/S0006-8993(99)01536-X

    PubMed  CAS  Google Scholar 

  • Sun YM, Zhang HY, Chen DZ, Liu CB (2002) Theoretical elucidation on the antioxidant mechanism of curcumin: a DFT study. Org Lett 4:2909–29011. doi:10.1021/ol0262789

    PubMed  CAS  Google Scholar 

  • Surh YJ (1999) Molecular mechanisms of chemopreventive effects of selected dietary and medicinal phenolic substances. Mutat Res 428:305–327. doi:10.1016/S1383-5742(99)00057-5

    PubMed  CAS  Google Scholar 

  • Tanaka Y, Ando S (1990) Synaptic ageing as revealed by changes in membrane potential and decreased activity of Na+, K+-ATPase. Brain Res 43:425–434

    Google Scholar 

  • Ure JA, Perassolo M (2000) Update on the pathophysiology of the epilepsy. J Neurol Sci 177:1–17. doi:10.1016/S0022-510X(00)00356-7

    PubMed  CAS  Google Scholar 

  • Van der Zee EA, Palm IF, O’Connor M, Maizels ET, Hunzicket-Dunn M, Disterhoft JF (2004) Aging-related alterations in the distribution of Ca(2+)-dependent PKC isoforms in rabbit hippocampus. Hippocampus 14:849–860. doi:10.1002/hipo.20000

    PubMed  Google Scholar 

  • Van Rensberg SJ, Carstens ME, Potocnik FC, Van der Walt BJ, Taljaard JJ (1995) Transferrin C2 and Alzheimer’s disease: another piece of puzzle found? Med Hypotheses 44:268–272. doi:10.1016/0306-9877(95)90178-7

    Google Scholar 

  • Van Rensberg SJ, Daniel WM, Potocnik FC, van Zyl JM, Taljaard JJ, Emsley RA (1997) A new model for the pathophysiology of Alzheimer’s disease. Aluminium toxicity is exacerbated by hydrogen peroxide and attenuated by an amyloid protein fragment and melatonin. S Afr Med J 87:1111–1115

    Google Scholar 

  • Varner JA, Jensen KF, Harweth W, Issacson RL (1998) Chronic administration of aluminium-fluoride or sodium fluoride to rats in drinking water: alterations in neuronal and cerebrovascular integrity. Brain Res 784:284–298. doi:10.1016/S0006-8993(97)01336-X

    PubMed  CAS  Google Scholar 

  • Walton JR (2006) Aluminium in hippcampal neurons from human with Alzheimer’s disease. Neurotoxicology 27:385–394. doi:10.1016/j.neuro.2005.11.007

    PubMed  CAS  Google Scholar 

  • Walton JR (2007) An aluminium-based rat model for Alzheimer’s disease exhibits oxidative damage, inhibition of PP2A activity, hyperphosphorylated tau, and granulovacuolar degeneration. J Inorg Chem 101:1275–1284

    CAS  Google Scholar 

  • Watanabe S, Fukui T (2000) Suppressive effect of curcumin on trichloroethane-induced oxidative stress. J Nutr Sci Vitaminaol Tokyo 46:230–234

    CAS  Google Scholar 

  • Wu A, Ying Z, Gomez-Pinilla F (2006) Dietary curcumin counteracts the outcome of traumatic brain injury on oxidative stress, synaptic plasticity, and cognition. Exp Neurol 197:309–317. doi:10.1016/j.expneurol.2005.09.004

    PubMed  CAS  Google Scholar 

  • Xu N, Majid V, Markesbery WR, Ehman WD (1992) Brain aluminium in Alzheimer’s disease using an improved GFAAS method. Neurotoxicology 13:735–744

    PubMed  CAS  Google Scholar 

  • Yang X, Thomas DP, Zhang X, Culver BW, Alexander BM, Murdoch WJ, Rao MN, Tulis DA, Ren J, Sreejayan N (2006) Curcumin inhibits platelet-derived growth factor-stimulated vascular smooth muscle cell function and injury-induced neointima formation. Arterioscler Thromb Vasc Biol 26:85–90. doi:10.1161/01.ATV.0000191635.00744.b6

    PubMed  Google Scholar 

  • Zatta P, Favarato M, Nicolini M (1993) Deposition of aluminium in brain tissues of rats exposed to inhalation of aluminium acetylacetonate. Neuroreport 4:1119–1122. doi:10.1097/00001756-199308000-00015

    PubMed  CAS  Google Scholar 

  • Zatta P, Zambenedetti P, Bruna V, Filippi B (1994) Activation of acetylcholinesterase by aluminium (III): the relevance of the metal species. Neuroreport 5(14):1777–1780

    Article  PubMed  CAS  Google Scholar 

  • Zhao Q, Slavkovich V, Zheng W (1998) Lead exposure promotes translocation of protein kinase C in rat choroids plexus in vitro, but not in vivo. Toxicol Appl Pharmacol 149:99–106. doi:10.1006/taap.1997.8352

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, D., Sethi, P., Hussain, E. et al. Curcumin counteracts the aluminium-induced ageing-related alterations in oxidative stress, Na+, K+ ATPase and protein kinase C in adult and old rat brain regions. Biogerontology 10, 489–502 (2009). https://doi.org/10.1007/s10522-008-9195-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-008-9195-x

Keywords

Navigation