Skip to main content
Log in

Xq27 FRAXA Locus is a Strong Candidate for Dyslexia: Evidence from a Genome-Wide Scan in French Families

  • Original Research
  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

Dyslexia is a frequent neurodevelopmental learning disorder. To date, nine susceptibility loci have been identified, one of them being DYX9, located in Xq27. We performed the first French SNP linkage study followed by candidate gene investigation in dyslexia by studying 12 multiplex families (58 subjects) with at least two children affected, according to categorical restrictive criteria for phenotype definition. Significant results emerged on Xq27.3 within DYX9. The maximum multipoint LOD score reached 3,884 between rs12558359 and rs454992. Within this region, seven candidate genes were investigated for mutations in exonic sequences (CXORF1, CXORF51, SLITRK2, FMR1, FMR2, ASFMR1, FMR1NB), all having a role during brain development. We further looked for 5′UTR trinucleotide repeats in FMR1 and FMR2 genes. No mutation or polymorphism co-segregating with dyslexia was found. This finding in French families with Dyslexia showed significant linkage on Xq27.3 enclosing FRAXA, and consequently confirmed the DYX9 region as a robust susceptibility locus. We reduced the previously described interval from 6.8 (DXS1227–DXS8091) to 4 Mb also disclosing a higher LOD score.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abecasis GR, Wigginton JE (2005) Handling marker–marker linkage disequilibrium: pedigree analysis with clustered markers. Am J Hum Genet 77:754–767

    Article  PubMed  Google Scholar 

  • Abecasis GR, Cherny SS, Cookson WO, Cardon LR (2002) Rapid-analysis of dense genetic maps using sparse gene flow trees. Nat Genet 30:97–101

    Article  PubMed  Google Scholar 

  • Aruga J, Mikoshiba K (2003) Identification and characterization of Slitrk, a novel neuronal transmembrane protein family controlling neurite outgrowth. Mol Cell Neurosci 24:117–129

    Article  PubMed  Google Scholar 

  • Bates T, Luciano M, Castles A, Coltheart M, Wright M, Martin N (2007) Replication of reported linkages for dyslexia and spelling and suggestive evidence for novel regions on chromosomes 4 and 17. Eur J Hum Genet 15:194–203

    Article  PubMed  Google Scholar 

  • Brown WE, Eliez S, Menon V, Rumsey JM, White CD, Reiss AL (2001) Preliminary evidence of widespread morphological variations of the brain in dyslexia. Neurology 56:781–783

    Article  PubMed  Google Scholar 

  • Cavalli-Sforza LL, King MC (1986) Detecting linkage for genetically heterogeneous diseases and detecting heterogeneity with linkage data. Am J Hum Genet 38:599–616

    PubMed  Google Scholar 

  • Cope N, Harold D, Hill G, Moskvina V, Stevenson J, Holmans P et al (2005) Strong evidence that KIAA0319 on chromosome 6p is a susceptibility gene for developmental dyslexia. Am J Hum Genet 76:59–581

    Article  Google Scholar 

  • Cornish KM, Kogan CS, Li L, Turk J, Jacquemont S, Hagerman RJ (2009) Lifespan changes in working memory in fragile X permutation males. Brain Cogn 69:551–558

    Article  PubMed  Google Scholar 

  • Cottingham RW Jr., Idury RM, Schaffer AA (1993) Faster sequential genetic computations. Am J Hum Genet 53:252–263 A version of 4.1P Fastlink

    PubMed  Google Scholar 

  • Cunningham CL, Martinez Cerdeno V, Navarro E, Prakash A, Angelastro JM, Willemsen R et al (2011) Premutation CGG-repeat expansion of the Fmr1 gene impairs mouse neocortical development. Hum Mol Genet 20:64–79

    Article  PubMed  Google Scholar 

  • Currier TA, Etchegaray MA, Haight JL, Galaburda AM, Rosen GD (2011) The effect of embryonic knockdown of the candidate dyslexia susceptibility gene DYX1C1 on the distribution of GABAergic neurons in the cerebral cortex. Neuroscience 172:535–546

    Article  PubMed  Google Scholar 

  • Davis S, Weeks DE (1997) Comparison of nonparametric statistics for detection of linkage in nuclear families: single-marker evaluation. Am J Hum Genet 61:1431–1444

    Article  PubMed  Google Scholar 

  • de Kovel GG, Hol FA, Heister JG, Willemen JJ, Sandkuijl LA, Franke B, Padberg GW (2004) Genomewide scan identifies susceptibility locus for dyslexia on Xq27 in an extended Dutch family. J Med Genet 41:652–657

    Article  PubMed  Google Scholar 

  • DeFries JC, Alarcon M (1996) Genetic of specific reading disability. Ment Retard Dev Disabil Res Rev 2:39–47

    Article  Google Scholar 

  • Eliez S, Rumsey JM, Giedd JN, Schmitt JE, Patwardhan AJ, Reiss AL (2000) Morphological alteration of temporal lobe gray matter in dyslexia: an MRI study. J Child Psychol Psychiatry 41:637–644

    Article  PubMed  Google Scholar 

  • ENCODE project consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74

    Article  Google Scholar 

  • Feingold E, Song KK, Weeks DE (2000) Comparison of allele-sharing statistics for general pedigrees. Genet Epidemiol Suppl 1:92–98

    Article  Google Scholar 

  • Fisher SE, Francks C, Marlow AJ, MacPhie IL, Newbury DF, Cardon LR et al (2002) Independent genome-wide scans identify a chromosome 18 quantitative-trait locus influencing dyslexia. Nat Genet 30:86–91

    Article  PubMed  Google Scholar 

  • Flannery K, Liederman J, Daly L, Schultz J (2000) Male prevalence for reading disability is found in a large sample of black and white children free for ascertainment bias. J Int Neuropsychol Soc 6(4):433–444

    Article  PubMed  Google Scholar 

  • Francks C, Paracchini S, Smith S, Richardson A, Scerri T, Cardon L et al (2004) A 77-kilobase region of chromosome 6p22.2 is associated with dyslexia in families from the United Kingdom and from the United States. Am J Hum Genet 75:1046–1058

    Article  PubMed  Google Scholar 

  • Galaburda AM, Sherman GF, Rosen GD, Aboitiz F, Geschwind N (1985) Four consecutive patients with cortical anomalies. Ann Neurol 18:222–233

    Article  PubMed  Google Scholar 

  • Galaburda AM, Menard M, Rosen GD (1994) Evidence for aberrant auditory anatomy in developmental dyslexia. Proc Natl Acad Sci USA 91:80110–80113

    Article  Google Scholar 

  • Habib M (2000) The neurological basis of developmental dyslexia: an overview and working hypothesis. Brain 123:2373–2399

    Article  PubMed  Google Scholar 

  • Hallgren B (1950) Specific dyslexia (congenital word-blindness); a clinical and genetic study. Acta Psychiatr Neurol Suppl 65:1–287

    PubMed  Google Scholar 

  • Hannula-Jouppi K, Kaminen-Ahola N, Taipale M, Eklund R, Nopola-Hemmo J, Kaariainen H, Kere J (2005) The axon guidance receptor gene ROBO1 is a candidate gene for developmental dyslexia. PLoS Genet 1:467–474

    Article  Google Scholar 

  • Klingberg T, Hedehus M, Temple E, Salz T, Gabrieli JD, Moseley ME et al (2000) Microstructure of temporo-parietal white matter as a basis for reading ability: evidence from diffusion tensor magnetic resonance imaging. Neuron 25:493–500

    Article  PubMed  Google Scholar 

  • Kruglyak L, Daly MJ, Reeve-Daly MP, Lander ES (1996) Parametric and nonparametric linkage analysis: a unified multipoint approach. Am J Hum Genet 58:1347–1363

    PubMed  Google Scholar 

  • Ladd P, Smith L, Rabaia N, Moore J, Georges S, Hansen S et al (2007) An antisense transcript spanning the CGG repeat region of FMR1 is up regulated in permutation carriers but silenced in full mutation individuals. Hum Mol Genet 16:3174–3187

    Article  PubMed  Google Scholar 

  • Lyon G, Shaywitt SE, Shaywitz BA (2003) A definition of dyslexia. Ann Dyslexia 53:1–14

    Article  Google Scholar 

  • Massinen S, Hokkanen M-E, Matsson H, Tammimies K, Tapia-Páez I et al (2011) Increased expression of the dyslexia candidate gene DCDC2 affects length and signaling of primary cilia in neurons. PLoS One 6:e20580

    Article  PubMed  Google Scholar 

  • Meng HY, Smith SD, Hager K, Held M, Liu J, Olson RK et al (2005) DCDC2 is associated with reading disability and modulates neuronal development in the brain. Proc Natl Acad Sci USA 102:17053–17058

    Article  PubMed  Google Scholar 

  • Muller-Myohsok B, Grimm T (1999) Linkage analysis and genetic models in dyslexia—considerations pertaining to discrete trait analysis and quantitative trait analyses. Eur Child Adolesc Psychiatry 8(Suppl 3):40–42

    Article  Google Scholar 

  • Pal DK, Greenberg BA (2002) Evaluating genetic heterogeneity in complex disorders. Hum Hered 53:216–226

    Article  PubMed  Google Scholar 

  • Patterson N, Pricie AL, Reich D (2006) Population structure and gene analysis. PLoS Genet 2:2190

    Article  Google Scholar 

  • Pechansky VJ, Burbridge TJ, Volz AJ, Fiodella C, Wissner-Gross Z, Galaburda AM et al (2010) The effect of variation in expression of the candidate dyslexia susceptibility gene homolog Kiaa0319 on neuronal migration and dendritic morphology in the rat. Cereb Cortex 20:884–897

    Article  Google Scholar 

  • Poelmans G, Buitelaar J, Pauls D, Francke B (2011) A theoretical network for dyslexia: integrating available genetic findings. Mol Psychiatry 16:365–382

    Article  PubMed  Google Scholar 

  • Price AL, Patterson NJ, Plenge RM et al (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 3:904–909

    Article  Google Scholar 

  • Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ, Sham PC (2007) PLINK: a toolset for whole-genome association and population-based linkage analysis. Am J Hum Genet 81:559–575

    Article  PubMed  Google Scholar 

  • Raskind WH (2001) Current understanding of the genetic basis of reading and spelling disability. Learn Disabil Q 21:141–157

    Article  Google Scholar 

  • Rutter M, Caspi A, Fergussin D, Horwood LJ, Goodman R, Maughan B et al (2004) Sex differences in developmental reading disability: new findings from 4 epidemiological studies. JAMA 291:2007–2012

    Article  PubMed  Google Scholar 

  • Scerri T, Schulte-Körne G (2010) Genetics of developmental dyslexia. Eur Child Adolesc Psychiatry 19:179–197

    Article  PubMed  Google Scholar 

  • Schumacher J, Anthoni H, Dahdouh F, König IR, Hillmer AM, Kluck N et al (2006) Strong genetic evidence of DCDC2 as a susceptibility gene for dyslexia. Am J Hum Genet 78:52–62

    Article  PubMed  Google Scholar 

  • Shaywitz SE (1998) Current concepts: dyslexia. N Engl J Med 338:307–312

    Article  PubMed  Google Scholar 

  • Shaywitz BA, Shaywitz SE, Pugh KR, Mencl WE, Fullbright RK, Skudlarski P et al (2002) Disruption of posterior brain systems for reading in children with developmental dyslexia. Biol Psychiatry 52:101–110

    Article  PubMed  Google Scholar 

  • Shugart YY, Chen L, Li R, Beaty T (2007) Family-based linkage disequilibrium tests using general pedigrees. Methods Mol Biol 376:141–149

    Article  PubMed  Google Scholar 

  • Taipale M, Kaminen M, Nopola-Hemii J, Haltia T, Myllyluoma B, Lyytinen H et al (2003) A candidate gene for developmental dyslexia encodes a nuclear tetratricopeptide repeat domain protein dynamically regulated in brain. Proc Natl Acad Sci USA 100:11553–11558

    Article  PubMed  Google Scholar 

  • R Development Core Team (2012) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria, ISBN 3-900051-07-0. http://www.R-project.org. Accessed 9 Feb 2012

  • Terwilliger JD, Goring HH (2000) Gene mapping in the 20th and 21st centuries: statistical methods data analysis and experimental design. Hum Biol 72(1):63–132

    PubMed  Google Scholar 

  • Vandermosten M, Boets B, Poelmans H, Sunaert S, Wouters J, Ghesquière P (2012) A tractography study in dyslexia: neuroanatomic correlates of orthographic, phonological and speech processing. Brain 135:935–948

    Article  PubMed  Google Scholar 

  • Wigginton JE, Abecasis GR (2005) PEDSTATS: descriptive statistics, graphics and quality assessment for gene mapping data. Bioinformatics 21:3445–3447

    Article  PubMed  Google Scholar 

  • Ziegler A, König I, Deimel W, Plume E, Nöthen M, Propping P et al (2005) Developmental dyslexia—recurrence risk estimates from a German bi-center study using the single proband sib pair design. Hum Hered 59:136–143

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant of the French Ministry of Education and Research. We thank D Raine, AS Galloux, AG Piller, G Turlotte, E Schweitzer, S Heath, and C Blanc-Tailleur for their valuable contribution. We are also very grateful to the families for their participation to the study.

Conflict of interest

All authors report no biomedical financial disclosures or potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Huc-Chabrolle.

Additional information

Edited by Stacey Cherny.

M. Huc-Chabrolle and C. Charon contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1 (PPT 191 kb)

Supplementary Table 2 (PPT 404 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huc-Chabrolle, M., Charon, C., Guilmatre, A. et al. Xq27 FRAXA Locus is a Strong Candidate for Dyslexia: Evidence from a Genome-Wide Scan in French Families. Behav Genet 43, 132–140 (2013). https://doi.org/10.1007/s10519-012-9575-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10519-012-9575-5

Keywords

Navigation