Skip to main content
Log in

1D velocity structure of the Po River plain (Northern Italy) assessed by combining strong motion and ambient noise data

  • Original Research Paper
  • Published:
Bulletin of Earthquake Engineering Aims and scope Submit manuscript

Abstract

Strong ground motions recorded on the sedimentary deposits of the Po River alluvial plain during the Emilia (Northern Italy) Mw 5.7 earthquake of May 29, 2012 are used to assess the vertical profile of shear-wave velocity above the limestone basement. Data were collected by a linear array installed for site effect studies after the Mw 5.9 mainshock of May 20, 2012. The array stations, equipped with both strong and weak motion sensors, are aligned in the South–North direction, at distances ranging from 1 to 26 km from the epicenter. The vertical components of ground motion show very distinctive, large-amplitude, low-frequency dispersive wave trains. Wavelet analysis yields group-velocity dispersion curve in the 0.2–0.7 Hz frequency band. The availability of a long ambient noise record allows estimates of the site resonance frequency along with its stability among stations. The joint inversion of dispersion of surface waves and ellipticity curves derived from ambient noise H/V allows extending investigations down to the sediment-limestone interface, at a depth of about 5,000 m. Our results add new information about the velocity structure at a scale that is intermediate between the local scale already investigated by other authors with small-aperture arrays using ambient noise and the regional scale inferred from modeling of seismogram waveforms recorded at hundreds of kilometers from the source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aki K (1957) Space and time spectra of stationary stochastic waves, with special reference to microtremors. Bull Earthq Res Inst Univ Tokyo 35:415–456

    Google Scholar 

  • Bonnefoy-Claudet S, Cornou C, Bard PY, Cotton F, Moczo P, Kristek J, Fäh D (2006) H/V ratio: a tool for site effects evaluation. Results from 1-D noise simulations. Geophys J Int 167(2):827–837. doi:10.1111/j.1365-246X.2006.03154.x

    Article  Google Scholar 

  • Bonnefoy-Claudet S, Köhler A, Cornou C, Wathelet M, Bard P-Y (2008) Effects of love waves on microtremor H/V ratio. Bull Seismol Soc Am 98:288–300

    Article  Google Scholar 

  • Bordoni P, Azzara RM, Cara F, Cogliano R, Cultrera G, Di Giulio G, Fodarella A, Milana G, Pucillo S, Riccio G, Rovelli A, Augliera P, Luzi L, Lovati S, Massa M, Pacor F, Puglia R, Ameri G (2012) Preliminary results from EMERSITO, a rapid response network for site-effect studies. Ann Geophys 55(4):599–608. doi:10.4401/ag-6153

    Google Scholar 

  • Burrato P, Vannoli P, Fracassi U, Basili R, Valensise G (2012) Is blind faulting truly invisible? Tectonic-controlled drainage evolution in the epicentral area of the May 2012, Emilia-Romagna earthquake sequence (northern Italy). Ann Geophys 55(4):525–531. doi:10.4401/ag-6182

    Google Scholar 

  • Capon J (1969) High-resolution frequency-wavenumber spectrum analysis. Proc IEEE 57:1408–1418

    Article  Google Scholar 

  • Carminati E, Scrocca D, Doglioni C (2010) Compaction-induced stress variations with depth in an active anticline: Northern Apennines. Italy J Geophys Res Solid Earth 115(B2):1–17. doi:10.1029/2009JB006395

    Google Scholar 

  • Cerrina Feroni A, Martelli L, Martinelli P, Ottria G (2002) Carta geologico-strutturale dell’Appennino emiliano-romagnolo in scala 1:250.000. Regione Emilia-Romagna—C.N.R., Pisa. S.EL.CA., Firenze

  • Combes JM, Grossman A, Tchamitchian P (1989) Wavelets. Time-frequency methods and phase space. Springer, Berlin

    Google Scholar 

  • Daubechies I (1990) The wavelet transform, time-frequency localization and signal analysis. IEEE Trans Inf Theory 36(5):961–1005

    Article  Google Scholar 

  • Dipartimento Protezione Civile (2012) The Emilia thrust earthquake of 20 May 2012 (Northern Italy): strong motion and geological observations—Report 1. http://www.protezionecivile.gov.it/resources/cms/documents/Report_DPC_1_Emilia_EQSd.pdf

  • Faccioli E (2013) Recent evolution and challenges in the seismic hazard analysis of the Po Plain region, Northern Italy” The second Prof. Nicholas Ambraseys distinguished lecture. Bull Earthq Eng 11:5–33. doi:10.1007/s10518-012-9416-1

    Article  Google Scholar 

  • Fäh D, Kind F, Giardini D (2001) A theoretical investigation of average H/V ratios. Geophys J Int 145:535–549

    Article  Google Scholar 

  • Holschneider H, Diallo MS, Kulesh M, Scherbaum F, Ohrnberger M, Lück E (2005) Characterization of dispersive surface waves using continuous wavelet transforms. Geophys J Int 163(2):463–478. doi:10.1111/j.1365-246X.2005.02787.x

    Article  Google Scholar 

  • ISIDe Working Group (2010) Italian seismological instrumental and parametric database. http://iside.rm.ingv.it

  • Konno K, Ohmachi T (1998) Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bull Seismol Soc Am 88:228–241

    Google Scholar 

  • Kulesh M, Holschneider M, Diallo MS, Xie Q, Scherbaum F (2005) Modeling of wave dispersion using continuous wavelet transforms. Pure Appl Geophys 162:843–855. doi:10.1007/s00024-004-2644-9

    Article  Google Scholar 

  • Kumar P, Foufoula-Georgiou E (1997) Wavelet analysis for geophysical applications. Rev Geophys 35(4): 385–412

    Google Scholar 

  • Lavecchia G, De Nardis R, Cirilli D, Brozzetti F, Boncio P (2012) The May–June 2012 Ferrara Arc earthquakes (northern Italy): structural control of the spatial evolution of the seismic sequence and of the surface pattern of coseismic fractures. Ann Geophys 55(4):533–540. doi:10.4401/ag-6173

    Google Scholar 

  • Lunedei E, Albarello D (2009) On the seismic noise wave field in a weakly dissipative layered Earth. Geophys J Int 177:1001–1014. doi:10.1111/j.1365-246X.2008.04062.x

    Article  Google Scholar 

  • Malagnini L, Herrmann RB, Munafo’ I, Buttinelli M, Anselmi M, Akinci A, Boschi E (2012) The 2012 ferrara seismic sequence: regional crustal structure, earthquake sources, and seismic hazard. Geophys Res Lett 39:L19302. doi:10.1029/2012GL053214

    Article  Google Scholar 

  • Martelli L, Molinari FC (2008) Studio geologico finalizzato alla ricerca di potenziali serbatoi geotermici nel sottosuolo del Comune di Mirandola. Regione Emilia-Romagna, Bologna, 26 pp

    Google Scholar 

  • Morlet J, Arens G, Fourgeau E, Giard D (1982) Wave propagation and sampling theory, part II. Sampling theory and complex waves. Geophysics 47(2):222–236. doi:10.1190/1.1441329

    Article  Google Scholar 

  • MPS Working Group (2004) Redazione della mappa di pericolosità sismica prevista dall’Ordinanza PCM 3274 del 20 marzo 2003. Rapporto conclusivo per il Dipartimento della Protezione Civile, INGV, Milano, pp. 65, +5 Appendices. http://zonesismiche.mi.ingv.it

  • NTC (2008) Norme tecniche per le costruzioni, 2008. DM140108. Ministero delle infrastrutture, Gazzetta Ufficiale, 29, 4.2.2008, Rome

  • Ohori M, Nobata A, Wakamatsu K (2002) A comparison of ESAC and FK methods of estimating phase velocity using arbitrarily shaped microtremor analysis. Bull Seismol Soc Am 92:2323–2332

    Article  Google Scholar 

  • Okada H, Matsushima K, Hikada E (1987) Comparison of spatial autocorrelation method and frequency wavenumber spectral method of estimating the phase velocity of Rayleigh waves in long-period microtremors. Geophys B Hokkaido Univ 49:53–62 (in Japanese with English abstract)

    Google Scholar 

  • Park HC, Kim DS (2001) Evaluation of the dispersive phase and group velocities using harmonic wavelet transform. NDT E Int 34:457–467

    Article  Google Scholar 

  • Park CB, Miller RD, Xia J (1999) Multi-channel analysis of surface waves. Geophysics 64:800–808

    Article  Google Scholar 

  • Pieri M, Groppi G (1975) The structure of the base of the Pliocene-Quaternary sequence in the subsurface of the Po and Veneto Plains, the Pedeapennine Basin and the Adriatic Sea. In: Ogniben, Parotto M, Praturlon A (eds) Structural model of Italy, Quaderni de “La Ricerca Scientifica” vol 90, pp 409–415

  • Pieri M, Groppi G (1981) Subsurface geological structure of the Po Plain (Italy), C.N.R. Progetto Finalizzato Geodinamica 414:278–286

    Google Scholar 

  • Priolo E, Romanelli M, Barnaba C, Mucciarelli M, Laurenzano G, Dall’Olio L, Caputo R, Santarato G, Vignola L, Lizza C, Di Bartolomeo P (2012) The Ferrara thrust earthquakes of May–June 2012: preliminary site response analysis at the sites of the OGS temporary network. Ann Geophys 55(4):591–598. doi:10.4401/ag-6172

    Google Scholar 

  • Pyrak-Nolte LJ, Nolte DD (1995) Wavelet analysis of velocity dispersion of elastic interface waves propagating along a fracture. Geophys Res Lett 22(11):1329–1332

    Article  Google Scholar 

  • Regione Emilia-Romagna (1999) Carta geologica di pianura dell’Emilia Romagna, D. Preti (ed), S.EL.CA., Firenze

  • Scognamiglio L, Margheriti L, Mele FM, Tinti E, Bono A, De Gori P, Lauciani V, Lucente FP, Mandiello AG, Marcocci C, Mazza S, Pintore S, Quintiliani M (2012) The 2012 Pianura Padana Emiliana seimic sequence: locations, moment tensors and magnitudes. Ann Geophys 55(4):549–560. doi:10.4401/ag-6159

    Google Scholar 

  • Tertulliani A, Arcoraci L, Berardi M, Bernardini F, Brizuela B, Castellano C, Del Mese S, Ercolani E, Graziani L, Maramai A, Rossi A, Sbarra M, Vecchi M (2012) The Emilia 2012 sequence: a macroseismic survey. Ann Geophys 554:679–687. doi:10.4401/ag-6140

    Google Scholar 

  • Tokimatsu K (1997) Geotechnical site characterization using surface waves. In: Ishihara K, Balkema AA (eds) Earthquake geotechnical engineering: proceedings IS-Tokyo 95, the first international conference on earthquake geotechnical engineering. Rotterdam, The Netherlands, pp 1333–1368

  • Wathelet M (2008) An improved neighborhood algorithm: parameter conditions and dynamic scaling. Geophys Res Lett 35:L09301. doi:10.1029/2008GL033256

    Article  Google Scholar 

  • Wathelet M, Jongmans D, Ohrnberger M (2004) Surface wave inversion using a direct search algorithm and its application to ambient vibration measurements. Near Surf Geophys 2:211–221

    Article  Google Scholar 

  • Xia J, Miller RD, Park CB (1999) Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves. Geophysics 64:691–700

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank Rocco Cogliano, Antonio Fodarella, Stefania Pucillo and Gaetano Riccio, INGV Grottaminarda research center, for helping in the field activities and during data retrieval and formatting. Luca Martelli, from “Regione Emilia Romagna”, offered fruitful food for thought about the geology of the area. A final thank to the Emilia people that always supported us during the field activity despite post event hard times.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuliano Milana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milana, G., Bordoni, P., Cara, F. et al. 1D velocity structure of the Po River plain (Northern Italy) assessed by combining strong motion and ambient noise data. Bull Earthquake Eng 12, 2195–2209 (2014). https://doi.org/10.1007/s10518-013-9483-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10518-013-9483-y

Keywords

Navigation