Skip to main content

Advertisement

Log in

Evaluation of Oxidative Metabolism in Leukocytes during Phagocytosis of Escherichia coli Carrying Genetic Constructs soxS::lux or katG::lux

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

We studied ROS generation by human peripheral blood monocytes and granulocytes during phagocytosis of Escherichia coli soxS::lux or katG::lux responding by luminescence (bioluminescence) to the development of oxidative stress. Initially high sensitivity of the bioluminescent reaction of E. coli katG::lux strain to the effects of model ROS (KO2 and H2O2) and pronounced induction of luminescence upon contact with granulocytes, whereas E. coli soxS::lux demonstrated less pronounced reaction to chemical oxidants and bioluminescence was observed primarily upon contact with monocytes. A correlation was found between quantitative characteristics of E. coli katG::lux bioluminescence and luminol-dependent chemiluminescence of leukocytes in some patients, but no dependence of this kind was noted for E. coli soxS::lux. The results can provide experimental substantiation of a new approach for evaluation of ROS production by leukocytes during phagocytosis and choosing the optimal object for these studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. G. Deryabin, I. F. Karimov, Simultaneous Evaluation of Chemiluminescence and Bioluminescence in a Phagocytic System. Bull. Exp. Biol. Med., 147, No. 3, 349-352 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. S. Belkin, D. R. Smulski, A. C. Vollmer, T. K. Van Dyk, and R. A. LaRossa, Oxidative stress detection with Escherichia coli harboring a katG’::lux fusion. Appl. Environ. Microbiol., 62, No. 7, 2252-2256 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. L. P. Candeias, K. B. Patel, M. R. Stratford, and P. Wardman, Free hydroxyl radicals are formed on reaction between the neutrophil-derived species superoxide anion and hypochlorous acid. FEBS Lett., 333, Nos. 1-2, 151-153 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. R. A. Clark, The human neutrophil respiratory burst oxidase. J. Infect. Dis., 161, No. 6, 1140-1147 (1990).

    Article  CAS  PubMed  Google Scholar 

  5. C. Dahlgren, A. Karlsson, and J. Bylund, Measurement of respiratory burst products generated by professional phagocytes. Methods Mol. Biol., 412, 349-363 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. J. Fäldt, M. Ridell, A. Karlsson, and C. Dahlgren, The phagocyte chemiluminescence paradox: luminol can act as an inhibitor of neutrophil NADPH-oxidase activity. Luminescence, 14, No. 3, 153-160 (1999).

    Article  PubMed  Google Scholar 

  7. K. Faulkner and I. Fridovich, Luminol and lucigenin as detectors for O2. Free Radic. Biol. Med., 15, No. 4, 447-451 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. K. P. Francis and M. P. Gallagher, Light emission from a Mud lux transcriptional fusion in Salmonella typhimurium is stimulated by hydrogen peroxide and by interaction with the mouse macrophage cell line J774.2. Infect. Immun., 61, No. 2, 640-649 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. K. P. Francis, P. D. Taylor, C. J. Inchley, and M. P. Gallagher, Identification of the ahp operon of Salmonella typhimurium as a macrophage-induced locus. J. Bacteriol., 179, No. 12, 4046-4048 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. J. P. Gaut, G. C. Yeh, H. D. Tran, J. Byun, J. P. Henderson, G. M. Richter, M. L. Brennan, A. J. Lusis, A. Belaaouaj, R. S. Hotchkiss, and J. W. Heinecke, Neutrophils employ the myeloperoxidase system to generate antimicrobial brominating and chlorinating oxidants during sepsis. Proc. Natl Acad. Sci. USA, 98, No. 21, 11,961-11,966 (2001).

    Article  CAS  Google Scholar 

  11. V. Yu. Kotova, I. V. Manukhov, and G. B. Zavilgelskii, Lux-biosensors for detection of SOS-response, heat shock, and oxidative stress. Appl. Biochem. Microbiol., 46, No. 8, 781-788 (2010).

    Article  CAS  Google Scholar 

  12. H. J. Lee, C. H., Youn B. C. Kim, and M. B. Gu, An oxidative stress-specific bacterial cell array chip for toxicity analysis. Biosens. Bioelectron, 22, Nos. 9-10, 2223-2229 (2007).

  13. M. Maccarrone and B. Brune, Redox regulation in acute and chronic inflammation. Cell Death Differentiation, 16, No. 8, 1184-1186 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. S. Mueller and J. Arnhold, Fast and sensitive chemiluminescence determination of H2O2 concentration in stimulated human neutrophils. J. Biolumin. Chemilumin, 10, No. 4, 229-237 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. A. W. Segal, How neutrophils kill microbes. Annu. Rev. Immunol., 23, 197-223 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. G. Deryabin.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 161, No. 2, pp. 237-242, February, 2016

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimov, I.F., Deryabin, D.G., Karimova, D.N. et al. Evaluation of Oxidative Metabolism in Leukocytes during Phagocytosis of Escherichia coli Carrying Genetic Constructs soxS::lux or katG::lux . Bull Exp Biol Med 161, 276–280 (2016). https://doi.org/10.1007/s10517-016-3394-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-016-3394-2

Key Words

Navigation