Skip to main content
Log in

Cooperative multi-robot belief space planning for autonomous navigation in unknown environments

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

We investigate the problem of cooperative multi-robot planning in unknown environments, which is important in numerous applications in robotics. The research community has been actively developing belief space planning approaches that account for the different sources of uncertainty within planning, recently also considering uncertainty in the environment observed by planning time. We further advance the state of the art by reasoning about future observations of environments that are unknown at planning time. The key idea is to incorporate within the belief indirect multi-robot constraints that correspond to these future observations. Such a formulation facilitates a framework for active collaborative state estimation while operating in unknown environments. In particular, it can be used to identify best robot actions or trajectories among given candidates generated by existing motion planning approaches, or to refine nominal trajectories into locally optimal paths using direct trajectory optimization techniques. We demonstrate our approach in a multi-robot autonomous navigation scenario and consider its applicability for autonomous navigation in unknown obstacle-free and obstacle-populated environments. Results indicate that modeling future multi-robot interaction within the belief allows to determine robot actions (paths) that yield significantly improved estimation accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. Optimality here refers to choosing the best actions from the given set of candidate paths.

References

  • Agha-Mohammadi, A.-A., Chakravorty, S., & Amato, N. M. (2014). Firm: Sampling-based feedback motion planning under motion uncertainty and imperfect measurements. The International Journal of Robotics Research., 33(2), 268–304.

    Article  Google Scholar 

  • Amato, C., Konidaris, G. D., Cruz, G., Maynor, C. A., How, J. P., & Kaelbling, L. P. (2014). Planning for decentralized control of multiple robots under uncertainty. arXiv preprint arXiv:1402.2871.

  • Atanasov, N., Le Ny, J., Daniilidis, K., & Pappas, G. J. (2015). Decentralized active information acquisition: Theory and application to multi-robot slam. In IEEE international conference on robotics and automation (ICRA).

  • Bry, A., & Roy, N. (2011). Rapidly-exploring random belief trees for motion planning under uncertainty. In IEEE international conference on robotics and automation (ICRA), pp. 723–730.

  • Burgard, W., Moors, M., Stachniss, C., & Schneider, F. (2005). Coordinated multi-robot exploration. IEEE Transactions on Robotics., 21(3), 376–386.

    Article  Google Scholar 

  • Carlone, L., Kaouk Ng, M., Du, J., Bona, B., & Indri, M. (2010). Rao-blackwellized particle filters multi robot SLAM with unknown initial correspondences and limited communication. In IEEE international conference on robotics and automation (ICRA), pp. 243–249. doi:10.1109/ROBOT.2010.5509307.

  • Chaves, S. M., Kim, A., & Eustice, R. M. (2014). Opportunistic sampling-based planning for active visual slam. In IEEE/RSJ interantional conference on intelligent robots and systems (IROS), IEEE, pp. 3073–3080.

  • Dellaert, F. (September 2012). Factor graphs and GTSAM: A hands-on introduction. Technical Report GT-RIM-CP&R-2012-002, Georgia Institute of Technology.

  • Eustice, R. M., Singh, H., & Leonard, J. J. (2006). Exactly sparse delayed-state filters for view-based SLAM. IEEE Transactions on Robotics, 22(6), 1100–1114.

    Article  Google Scholar 

  • Hartley, R. I., & Zisserman, A. (2004). Multiple view geometry in computer vision (2nd ed.). Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • He, R., Prentice, S., & Roy, N. (2008). Planning in information space for a quadrotor helicopter in a gps-denied environment. In IEEE international conference on robotics and automation (ICRA), pp. 1814–1820.

  • Hollinger, G. A., & Sukhatme, G. S. (2014). Sampling-based robotic information gathering algorithms. International Journal of Robotics Research, 33(9), 1271–1287.

    Article  Google Scholar 

  • Indelman, V. (September 2015a). Towards multi-robot active collaborative state estimation via belief space planning. In IEEE/RSJ international conference on intelligent robots and systems (IROS).

  • Indelman, V. (September 2015b). Towards cooperative multi-robot belief space planning in unknown environments. In Proceedings of the international symposium of robotics research (ISRR).

  • Indelman, V., & Dellaert, F. (2015). Incremental light bundle adjustment: Probabilistic analysis and application to robotic navigation. In New development in robot vision, cognitive systems monographs (Vol. 23, pp. 111–136). Springer: Berlin Heidelberg. ISBN 978-3-662-43858-9. doi:10.1007/978-3-662-43859-6_7.

  • Indelman, V., Gurfil, P., Rivlin, E., & Rotstein, H. (2012). Distributed vision-aided cooperative localization and navigation based on three-view geometry. Robotics and Autonomous Systems, 60(6), 822–840.

    Article  Google Scholar 

  • Indelman, V., Carlone, L., & Dellaert, F. (December 2013). Towards planning in generalized belief space. In The 16th international symposium on robotics research, Singapore.

  • Indelman, V., Nelson, E., Michael, N., & Dellaert, F. (2014). Multi-robot pose graph localization and data association from unknown initial relative poses via expectation maximization. In IEEE international conference on robotics and automation (ICRA).

  • Indelman, V., Carlone, L., & Dellaert, F. (2015a). Planning in the continuous domain: A generalized belief space approach for autonomous navigation in unknown environments. Intnernational Journal of Robotics Research, 34(7), 849–882.

    Article  Google Scholar 

  • Indelman, V., Roberts, R., & Dellaert, F. (2015b). Incremental light bundle adjustment for structure from motion and robotics. Robotics and Autonomous Systems, 70, 63–82.

    Article  Google Scholar 

  • Indelman, V., Nelson, E., Dong, J., Michael, N., & Dellaert, F. (2016). Incremental distributed inference from arbitrary poses and unknown data association: Using collaborating robots to establish a common reference. IEEE Control Systems Magazine (CSM), Special Issue on Distributed Control and Estimation for Robotic Vehicle Networks, 36(2), 41–74.

    MathSciNet  Google Scholar 

  • Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J., & Dellaert, F. (2012). iSAM2: Incremental smoothing and mapping using the Bayes tree. International Journal of Robotics Research, 31, 217–236.

    Article  Google Scholar 

  • Karaman, S., & Frazzoli, E. (2011). Sampling-based algorithms for optimal motion planning. International Journal of Robotics Research, 30(7), 846–894.

    Article  MATH  Google Scholar 

  • Kavraki, L. E., Svestka, P., Latombe, J.-C., & Overmars, M. H. (1996). Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automation, 12(4), 566–580.

    Article  Google Scholar 

  • Kim, A., & Eustice, R. M. (2014). Active visual slam for robotic area coverage: Theory and experiment. International Journal of Robotics Research., 34(4–5), 457–475.

    Google Scholar 

  • Koenig, Sven, & Likhachev, Maxim. (2005). Fast replanning for navigation in unknown terrain. IEEE Transactions on Robotics, 21(3), 354–363.

    Article  Google Scholar 

  • Kurniawati, H., Hsu, D., & Lee, W. S. (2008). Sarsop: Efficient point-based pomdp planning by approximating optimally reachable belief spaces. In Robotics: Science and systems (RSS) (Vol. 2008).

  • LaValle, S. M., & Kuffner, J. J. (2001). Randomized kinodynamic planning. International Journal of Robotics Research, 20(5), 378–400.

    Article  Google Scholar 

  • Levine, D., Luders, B., & How, J. P. (2013). Information-theoretic motion planning for constrained sensor networks. Journal of Aerospace Information Systems, 10(10), 476–496.

    Article  Google Scholar 

  • Lu, F., & Milios, E. (Apr 1997). Globally consistent range scan alignment for environment mapping. Autonomous robots, pp. 333–349.

  • Papadimitriou, C., & Tsitsiklis, J. (1987). The complexity of markov decision processes. Mathematics of Operations Research, 12(3), 441–450.

    Article  MathSciNet  MATH  Google Scholar 

  • Pathak, S., Thomas, A., Feniger, A., & Indelman, V. (2016a). Robust active perception via data-association aware belief space planning. arXiv preprint: arXiv.1606.05124.

  • Pathak, S., Thomas, A., Feniger, A., & Indelman, V. (September 2016b). Da-bsp: Towards data association aware belief space planning for robust active perception. In Europian conference on AI (ECAI). Accepted.

  • Patil, S., Kahn, G., Laskey, M., Schulman, J., Goldberg, K., & Abbeel, P. (2014). Scaling up gaussian belief space planning through covariance-free trajectory optimization and automatic differentiation. In International workshop on the algorithmic foundations of robotics.

  • Pineau, J., Gordon, G. J., & Thrun, S. (2006). Anytime point-based approximations for large pomdps. Journal of Artificial Intelligence Research, 27, 335–380.

    MATH  Google Scholar 

  • Platt, R., Tedrake, R., Kaelbling, L. P., & Lozano-Pérez, T. (2010). Belief space planning assuming maximum likelihood observations. Robotics: science and systems (RSS) (pp. 587–593). Spain: Zaragoza.

    Google Scholar 

  • Prentice, S., & Roy, N. (2009). The belief roadmap: Efficient planning in belief space by factoring the covariance. International Journal of Robotics Research., 28(11–12), 1448–1465.

    Article  Google Scholar 

  • Regev, T., & Indelman, V. (2016). Multi-robot decentralized belief space planning in unknown environments via efficient re-evaluation of impacted paths. In IEEE/RSJ international conference on intelligent robots and systems (IROS), accepted.

  • Ross, Stéphane, Pineau, Joelle, Paquet, Sébastien, & Chaib-Draa, Brahim. (2008). Online planning algorithms for pomdps. Journal of Artificial Intelligence Research, 32, 663–704.

    MathSciNet  MATH  Google Scholar 

  • Roumeliotis, S. I., & Bekey, G. A. (August 2002). Distributed multi-robot localization. In IEEE transactions on robotics and automation.

  • Silver, David, & Veness, Joel (2010). Monte-carlo planning in large pomdps. In Advances in neural information processing systems (NIPS), pp. 2164–2172.

  • Stachniss, C., Grisetti, G., & Burgard, W. (2005). Information gain-based exploration using rao-blackwellized particle filters. In Robotics: science and Systems (RSS), pp. 65–72.

  • Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic Robotics. Cambridge: The MIT press.

    MATH  Google Scholar 

  • Valencia, R., Morta, M., Andrade-Cetto, J., & Porta, J. M. (2013). Planning reliable paths with pose SLAM. IEEE Transactions on Robotics, 29(4), 1050–1059.

    Article  Google Scholar 

  • Van Den Berg, J., Patil, S., & Alterovitz, R. (2012). Motion planning under uncertainty using iterative local optimization in belief space. International Journal of Robotics Research, 31(11), 1263–1278.

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Technion Autonomous Systems Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim Indelman.

Additional information

This is one of several papers published in Autonomous Robots comprising the Special Issue on Active Perception.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Indelman, V. Cooperative multi-robot belief space planning for autonomous navigation in unknown environments. Auton Robot 42, 353–373 (2018). https://doi.org/10.1007/s10514-017-9620-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-017-9620-6

Keywords

Navigation