Skip to main content

Advertisement

Log in

Generalized hierarchical control

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

Multi-objective control systems for complex robots usually have to handle multiple prioritized tasks. Most existing hierarchical control techniques handle either strict task priorities by using null-space projectors or a sequence of quadratic programs; or non strict task priorities by using a weighting strategy. This paper proposes a novel approach to handle both strict and non-strict priorities of an arbitrary number of tasks. It can achieve multiple priority rearrangements simultaneously. A generalized projector, which makes it possible to completely project a task into the null-space of a set of tasks, while partially projecting it into the null-space of some other tasks, is developed. This projector can be used to perform priority transitions and task insertion or deletion. The control input is computed by solving one quadratic programming problem, where generalized projectors are adopted to maintain a task hierarchy, and equality or inequality constraints can be implemented. The effectiveness of this approach is demonstrated on a simulated robotic manipulator in a dynamic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. The notation \(i \triangleright j\) indicates that task i has a strict higher priority over task j.

  2. The dependence to \(\varvec{q}\) is omitted for clarity reasons.

References

  • Abe, Y., da Silva, M., & Popović, J. (2007). Multiobjective control with frictional contacts. In Proceedings of the ACM SIGGRAPH/eurographics symposium on computer animation (pp. 249–258).

  • Aghili, F. (2005). A unified approach for inverse and direct dynamics of constrained multibody systems based on linear projection operator: Applications to control and simulation. IEEE Transactions on Robotics, 21(5), 834–849. doi:10.1109/TRO.2005.851380.

    Article  Google Scholar 

  • Andersson, J., Kesson, J., & Diehl, M. (2012). Casadi—A symbolic package for automatic differentiation and optimal control. In Recent advances in algorithmic differentiation.

  • Baerlocher, P., & Boulic, R. (1998). Task-priority formulations for the kinematic control of highly redundant articulated structures. In IEEE/RSJ international conference on intelligent robots and systems (Vol. 1, pp. 323–329). doi:10.1109/IROS.1998.724639.

  • Bouyarmane, K., & Kheddar, A. (2011). Using a multi-objective controller to synthesize simulated humanoid robot motion with changing contact configurations. In IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 4414–4419). doi:10.1109/IROS.2011.6094483.

  • Chang, K. S., & Khatib, O. (1999). Efficient algorithm for extended operational space inertia matrix. In IEEE/RSJ international conference on intelligent robots and systems, IEEE (Vol. 1, pp. 350–355).

  • Collette, C., Micaelli, A., Andriot, C., & Lemerle, P. (2007). Dynamic balance control of humanoids for multiple grasps and non coplanar frictional contacts. In 7th IEEE-RAS International Conference on Humanoid Robots (pp. 81–88).

  • Dietrich, A., Albu-Schaffer, A., & Hirzinger, G. (2012). On continuous null space projections for torque-based, hierarchical, multi-objective manipulation. In IEEE international conference on robotics and automation (ICRA) (pp. 2978–2985). doi:10.1109/ICRA.2012.6224571.

  • Egeland, O., Sagli, J., Spangelo, I., & Chiaverini, S. (1991). A damped least-squares solution to redundancy resolution. In IEEE international conference on robotics and automation (Vol. 1, pp. 945–950). doi:10.1109/ROBOT.1991.131710.

  • Escande, A., Mansard, N., & Wieber, P. B. (2013). Hierarchical quadratic programming: Companion report. Tech. Rep. http://hal.archives-ouvertes.fr/hal-00970816.

  • Escande, A., Mansard, N., & Wieber, P. B. (2014). Hierarchical quadratic programming: Fast online humanoid-robot motion generation. The International Journal of Robotics Research. doi:10.1177/0278364914521306.

  • Flacco, F., De Luca, A., & Khatib, O. (2012a). Motion control of redundant robots under joint constraints: Saturation in the null space. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 285–292). doi:10.1109/ICRA.2012.6225376.

  • Flacco, F., De Luca, A., & Khatib, O. (2012b). Prioritized multi-task motion control of redundant robots under hard joint constraints. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 3970–3977). doi:10.1109/IROS.2012.6385619.

  • Hsu, P., Mauser, J., & Sastry, S. (1989). Dynamic control of redundant manipulators. Journal of Robotic Systems, 6(2), 133–148. doi:10.1002/rob.4620060203.

    Article  MATH  Google Scholar 

  • Jarquin, G., Escande, A., Arechavaleta, G., Moulard, T., Yoshida, E., & Parra-Vega, V. (2013). Real-time smooth task transitions for hierarchical inverse kinematics. In 13th IEEE-RAS international conference on humanoid robots (pp. 528–533). doi:10.1109/HUMANOIDS.2013.7030024.

  • Kanoun, O., Lamiraux, F., Wieber, P. B., Kanehiro, F., Yoshida, E., & Laumond, J. P. (2009). Prioritizing linear equality and inequality systems: Application to local motion planning for redundant robots. In IEEE international conference on robotics and automation (pp. 2939–2944).

  • Kanoun, O., Lamiraux, F., & Wieber, P. B. (2011). Kinematic control of redundant manipulators: Generalizing the task-priority framework to inequality task. IEEE Transactions on Robotics, 27(4), 785–792.

    Article  Google Scholar 

  • Keith, F., Wieber, P. B., Mansard, N., & Kheddar, A. (2011). Analysis of the discontinuities in prioritized tasks-space control under discrete task scheduling operations. In IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 3887–3892). doi:10.1109/IROS.2011.6094706.

  • Kerrigan, E. C., & Maciejowski, J. M. (2000). Soft constraints and exact penalty functions in model predictive control. In Proceedings of the UKACC international conference. Cambridge, UK.

  • Khatib, O. (1986). Real-time obstacle avoidance for manipulators and mobile robots. The International Journal of Robotics Research, 5(1), 90–98.

    Article  MathSciNet  Google Scholar 

  • Khatib, O. (1987). A unified approach for motion and force control of robot manipulators: The operational space formulation. IEEE Journal of Robotics and Automation, 3(1), 43–53.

    Article  Google Scholar 

  • Khatib, O. (1995). Inertial properties in robotic manipulation: An object-level framework. The International Journal of Robotics Research, 14(1), 19–36.

    Article  Google Scholar 

  • Khatib, O., Sentis, L., & Park, J. H. (2008). A unified framework for whole-body humanoid robot control with multiple constraints and contacts. European robotics symposium 2008, springer tracts in advanced robotics (Vol. 44, pp. 303–312). Berlin: Springer.

  • Lee, J., Mansard, N., & Park, J. (2012). Intermediate desired value approach for task transition of robots in kinematic control. IEEE Transactions on Robotics, 28(6), 1260–1277. doi:10.1109/TRO.2012.2210293.

    Article  Google Scholar 

  • Liégeois, A. (1977). Automatic supervisory control of the configuration and behavior of multibody mechanisms. IEEE Transactions on Systems, Man and Cybernetics, 7(12), 868–871.

    Article  MATH  Google Scholar 

  • Liu, M., Micaelli, A., Evrard, P., Escande, A., & Andriot, C. (2011). Interactive dynamics and balance of a virtual character during manipulation tasks. In IEEE international conference on robotics and automation (ICRA) (pp. 1676–1682).

  • Liu, M., Micaelli, A., Evrard, P., Escande, A., & Andriot, C. (2012). Interactive virtual humans: A two-level prioritized control framework with wrench bounds. IEEE Transactions on Robotics, 28(6), 1309–1322. doi:10.1109/TRO.2012.2208829.

    Article  Google Scholar 

  • Mansard, N., Khatib, O., & Kheddar, A. (2009a). A unified approach to integrate unilateral constraints in the stack of tasks. IEEE Transactions on Robotics, 25(3), 670–685.

    Article  Google Scholar 

  • Mansard, N., Remazeilles, A., & Chaumette, F. (2009). Continuity of varying-feature-set control laws. IEEE Transactions on Automatic Control, 54(11), 2493–2505. doi:10.1109/TAC.2009.2031202.

    Article  MathSciNet  Google Scholar 

  • Mistry, M., Nakanishi, J., & Schaal, S. (2007). Task space control with prioritization for balance and locomotion. In IEEE/RSJ international conference on intelligent robots and systems (pp. 331–338). doi:10.1109/IROS.2007.4399595.

  • Mistry, M., Nakanishi, J., Cheng, G., & Schaal, S. (2008). Inverse kinematics with floating base and constraints for full body humanoid robot control. In 8th IEEE-RAS international conference on humanoid robots (pp. 22–27). doi:10.1109/ICHR.2008.4755926.

  • Padois, V., Fourquet, J. Y., Chiron, P., et al. (2007). Kinematic and dynamic model-based control of wheeled mobile manipulators: A unified framework for reactive approaches. Robotica, 25(2), 157.

  • Peters, J., Mistry, M., Udwadia, F., Nakanishi, J., & Schaal, S. (2008). A unifying framework for robot control with redundant dofs. Autonomous Robots, 24(1), 1–12. doi:10.1007/s10514-007-9051-x.

    Article  Google Scholar 

  • Petrič, T., & Žlajpah, L. (2013). Smooth continuous transition between tasks on a kinematic control level: Obstacle avoidance as a control problem. Robotics and Autonomous Systems, 61(9), 948–959. doi:10.1016/j.robot.2013.04.019.

    Article  Google Scholar 

  • Saab, L., Soueres, P., & Fourquet, J. Y. (2009). Coupling manipulation and locomotion tasks for a humanoid robot. In International conference on advances in computational tools for engineering applications (ACTEA) (pp. 84–89).

  • Saab, L., Mansard, N., Keith, F., Fourquet, J. Y., & Soueres, P. (2011). Generation of dynamic motion for anthropomorphic systems under prioritized equality and inequality constraints. In IEEE international conference on robotics and automation (ICRA) (pp 1091–1096).

  • Saab, L., Ramos, O., Keith, F., Mansard, N., Soueres, P., & Fourquet, J. Y. (2013). Dynamic whole-body motion generation under rigid contacts and other unilateral constraints. IEEE Transactions on Robotics, 29(2), 346–362. doi:10.1109/TRO.2012.2234351.

    Article  Google Scholar 

  • Sadeghian, H., Villani, L., Keshmiri, M., & Siciliano, B. (2013). Dynamic multi-priority control in redundant robotic systems. Robotica, 31, 1155–1167. doi:10.1017/S0263574713000416.

    Article  Google Scholar 

  • Salini, J. (2013). Arboris-Python: A rigid body dynamics and contacts simulator written in python. https://github.com/salini/arboris-python.

  • Salini, J., Padois, V., & Bidaud, P. (2011). Synthesis of complex humanoid whole-body behavior: A focus on sequencing and tasks transitions. In IEEE international conference on robotics and automation (ICRA) (pp. 1283–1290). doi:10.1109/ICRA.2011.5980202.

  • Sentis, L., & Khatib, O. (2004a). Prioritized multi-objective dynamics and control of robots in human environments. In 4th IEEE/RAS international conference on humanoid robots. (Vol. 2, pp. 764–780). doi:10.1109/ICHR.2004.1442684.

  • Sentis, L., & Khatib, O. (2004b). Task-oriented control of humanoid robots through prioritization. In IEEE RAS/RSJ international conference on humanoid robots.

  • Sentis, L., & Khatib, O. (2005). Synthesis of whole-body behaviors through hierarchical control of behavioral primitives. International Journal of Humanoid Robotics, 02(04), 505–518. doi:10.1142/S0219843605000594.

    Article  Google Scholar 

  • Sentis, L., Park, J., & Khatib, O. (2010). Compliant control of multi-contact and center of mass behaviors in humanoid robots. IEEE Transactions on Robotics, 26(3), 483–501. doi:10.1109/TRO.2010.2043757.

    Article  Google Scholar 

  • Siciliano, B., & Slotine, J. J. (1991). A general framework for managing multiple tasks in highly redundant robotic systems. In Fifth international conference on advanced robotics (Vol. 2, pp 1211–1216). doi:10.1109/ICAR.1991.240390.

  • Stasse, O., Escande, A., Mansard, N., Miossec, S., Evrard, P., & Kheddar, A. (2008). Real-time (self)-collision avoidance task on a HRP-2 humanoid robot. In IEEE international conference on robotics and automation (ICRA) (pp. 3200–3205).

Download references

Acknowledgments

We would like to thank the reviewers for their insightful comments on the paper. This work was partially supported by the European Commission, within the CoDyCo project (FP7-ICT-2011-9, No. 600716) and by the RTE company through the RTE/UPMC chair Robotics Systems for field intervention in constrained environments held by Vincent Padois.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingxing Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 43780 KB)

Proof of the maintenance of strict hierarchies represented by standard lexicographic orders subject to constraints

Proof of the maintenance of strict hierarchies represented by standard lexicographic orders subject to constraints

This section proves that the proposed GHC approach (13) can maintain strict task hierarchies represented by standard lexicographic orders while accounting for linear constraints.

Suppose there are \(n_t\) tasks that should be organized in a way such that each task i has a strict lower priority than task \(i-1\) with i = \(2,\ldots ,n_t\). In this case, the generalized projector \(\mathbf {P}_i\) for a task i is in fact a null-space projector, which projects a task Jacobian into the null-space of all the previous \(i-1\) tasks, and each \(\mathbf {A}_i\) is an identity matrix. Let each task objective function be \(\varvec{f}_{i} = \mathbf {J}_i \varvec{x}_i^{\prime } - \varvec{x}_i^d\), with \(\varvec{x}_i^{\prime }\) being a joint space task variable, such as \(\dot{\varvec{q}}_{i}^{{\prime }}\), \(\ddot{\varvec{q}}_{i}^{{\prime }}\), or \(\varvec{\tau }_{i}^{{\prime }}\), etc. Moreover, the global variable \(\varvec{x}=\sum _i \mathbf {P}_i\varvec{x}_i^{\prime }\) should satisfy linear equality or inequality constraints \(\mathbf {G} \varvec{x}\le \varvec{h}\).

At the first stage, the regulation term is neglected, and the optimization problem can be written as follows

$$\begin{aligned} \begin{aligned} \mathop {{\arg \min }}\limits _{\begin{array}{c} {\varvec{x}}_{(n_t)}^{\prime } \end{array}}&\sum \limits _{i=1}^{n_{t}} \left\| \mathbf {J}_i \varvec{x}_i^{\prime } - \varvec{x}_i^d \right\| ^2 \\ \text {subject to}\;&\mathbf {G}\sum \limits _{i=1}^{n_{t}} \mathbf {P}_i\varvec{x}_i^{\prime } \le \varvec{h} \end{aligned} \end{aligned}$$
(16)

where \({\varvec{x}}_{(n_t)}^{\prime }=\left\{ \varvec{x}_{1}^{\prime },\varvec{x}_{2}^{\prime },\ldots \varvec{x}_{n_t}^{\prime }\right\} \), and the solution to (16) is denoted as \(\varvec{x}_{(n_t)}^*=\left\{ \varvec{x}_{1}^{*},\varvec{x}_{2}^{*},\ldots \varvec{x}_{n_t}^{*}\right\} \).

When \(n_t = 1\), the optimization problem can be written as

$$\begin{aligned} \begin{aligned} \mathop {{\arg \min }}\limits _{\begin{array}{c} {\varvec{x}}_{(1)}^{\prime } \end{array}}&\left\| \mathbf {J}_1 \varvec{x}_{(1)}^{\prime } - \varvec{x}_1^d \right\| ^2 \\ \text {subject to}\;&\mathbf {G} \varvec{x}_{(1)}^{\prime } \le \varvec{h}. \end{aligned} \end{aligned}$$
(17)

The solution to this problem \(\varvec{x}_{(1)}^*\) is the same as the one to the problem formulated by HQP.

When \(n_t = k\), the optimization problem is formulated as

$$\begin{aligned} \begin{aligned} \mathop {{\arg \min }}\limits _{\begin{array}{c} {\varvec{x}}_{(k)}^{\prime } \end{array}}&\sum \limits _{i=1}^{k} \left\| \mathbf {J}_i \varvec{x}_i^{\prime } - \varvec{x}_i^d \right\| ^2\\ \text {subject to}\;&\mathbf {G}\sum \limits _{i=1}^{k} \mathbf {P}_i\varvec{x}_i^{\prime } \le \varvec{h}. \end{aligned} \end{aligned}$$
(18)

Suppose the solution \(\varvec{x}_{(k)}^*\) can maintain the strict task hierarchy: if a task \(k+1\) is inserted with lowest priority with respect to the set of k tasks, then the optimization problem with the \(k+1\) tasks can be written as

$$\begin{aligned} \begin{aligned} \mathop {{\arg \min }}\limits _{\begin{array}{c} {\varvec{x}}_{(k+1)}^{\prime } \end{array}}&\sum \limits _{i=1}^{k} \left\| \mathbf {J}_i \varvec{x}_i^{\prime } - \varvec{x}_i^d \right\| ^2 + \left\| \mathbf {J}_{k+1} \varvec{x}_{k+1}^{\prime } - \varvec{x}_{k+1}^d \right\| ^2 \\ \text {subject to}\;&\mathbf {G}\left( \sum \limits _{i=1}^{k} \mathbf {P}_i\varvec{x}_i^{\prime } + \mathbf {P}_{k+1}\varvec{x}_{k+1}^{\prime }\right) \le \varvec{h}. \end{aligned} \end{aligned}$$
(19)

As \(\mathbf {P}_{k}\mathbf {P}_{k+1}=\mathbf {P}_{k+1}\), the term \(\sum \limits _{i=1}^{k} \mathbf {P}_i\varvec{x}_i^{\prime } + \mathbf {P}_{k+1}\varvec{x}_{k+1}^{\prime }\) in the constraint in (19) is equivalent to \(\sum \limits _{i=1}^{k-1} \mathbf {P}_i\varvec{x}_i^{\prime } + \mathbf {P}_{k}\varsigma _k\), with

$$\begin{aligned} \varsigma _k = \varvec{x}_k^{\prime } + \mathbf {P}_{k+1}\varvec{x}_{k+1}^{\prime }. \end{aligned}$$
(20)

Then problem (19) can be written as

$$\begin{aligned} \begin{aligned} \mathop {{\arg \min }}\limits _{\begin{array}{c} {\varvec{x}}_{(k)}^{\prime },\varsigma _k,\varvec{x}_{k+1} \end{array}}&\sum \limits _{i=1}^{k-1} \left\| \mathbf {J}_i \varvec{x}_i^{\prime } - \varvec{x}_i^d \right\| ^2 + \left\| \mathbf {J}_k \varsigma _k - \varvec{x}_k^d \right\| ^2 \\&+\left\| \mathbf {J}_{k+1} \varvec{x}_{k+1}^{\prime } - \varvec{x}_{k+1}^d \right\| ^2 \\ \text {subject to}\;&\mathbf {G}\left( \sum \limits _{i=1}^{k-1} \mathbf {P}_i\varvec{x}_i^{\prime }+\mathbf {P}_k\varsigma _k\right) \le \varvec{h}\\&\varsigma _k = \varvec{x}_k^{\prime } + \mathbf {P}_{k+1}\varvec{x}_{k+1}^{\prime }. \end{aligned} \end{aligned}$$
(21)

\(\varvec{x}_k^{\prime }\) in (21) is a free variable, and this problem can be separated into two sub-problems. The first sub-problem is

$$\begin{aligned} \begin{aligned}&\mathop {{\arg \min }}\limits _{\begin{array}{c} {\varvec{x}}_{(k-1)}^{\prime },\varsigma _k \end{array}} \sum \limits _{i=1}^{k-1} \left\| \mathbf {J}_i \varvec{x}_i^{\prime } - \varvec{x}_i^d \right\| ^2 + \left\| \mathbf {J}_k \varsigma _k - \varvec{x}_k^d \right\| ^2\\&\text {subject to}\;\ \mathbf {G}\left( \sum \limits _{i=1}^{k-1} \mathbf {P}_i\varvec{x}_i^{\prime }+\mathbf {P}_k\varsigma _k\right) \le \varvec{h}. \end{aligned} \end{aligned}$$
(22)

The optimal solution \(\sum \limits _{i=1}^{k-1}\mathbf {P}_i\varvec{x}_{i}^{*,\prime } + \mathbf {P}_k\varsigma _k^*\) to this problem is equivalent to the one of (18). Indeed, these two solutions have the same effect on task k

$$\begin{aligned} \mathbf {J}_k\sum \limits _{i=1}^{k}\mathbf {P}_i\varvec{x}_{i}^{*,\prime } = \mathbf {J}_k\left( \sum \limits _{i=1}^{k-1}\mathbf {P}_i\varvec{x}_{i}^{*,\prime } + \mathbf {P}_k\varsigma _k^*\right) . \end{aligned}$$
(23)

To prove (23), one needs to notice that \(\mathbf {J}_i\mathbf {P}_{j}=\varvec{0}\) with \(j\ge i\). The second sub-problem is given by

$$\begin{aligned} \mathop {{\arg \min }}\limits _{\begin{array}{c} \varvec{x}_{k+1} \end{array}} \left\| \mathbf {J}_{k+1} \varvec{x}_{k+1}^{\prime } - \varvec{x}_{k+1}^d \right\| ^2. \end{aligned}$$
(24)

Therefore, the insertion of a lower priority task \(k+1\) does not change the optima of the k previous task objectives. In other words, the strict task hierarchy of an arbitrary number of tasks subject to linear constraints can be maintained.

We have proved that each lower priority task will not increase the obtained optima of all the previous tasks. The rest of this proof explains the roles of the regulation term. As mentioned in Sect. 5, the use of a regulation term, which minimizes the norm of each task variable, helps to ensure the uniqueness of the solution. As each task objective i is assigned with the weight \(\omega _i=1\), which is much greater than the weight of the regulation term (\(\omega _r<<1\)), the task variables are optimized to mainly satisfy task objectives. Moreover, in GHC, this regulation term also helps to improve the performance of lower priority tasks. Consider \(k+1\) levels of tasks to handle, as \(\mathbf {J}_i\mathbf {P}_{j}=\varvec{0}\) with \(j\ge i\), the final solution is \(\sum \limits _{i=1}^{k} \mathbf {P}_i\varvec{x}_{i}^{*} + \mathbf {P}_{k+1}\varvec{x}_{k+1}^{*}\). Denoting the elements required by task i as \(\varvec{x}_{i}^{i,*}\) and the rest elements that are are not effectively handled by task objective i as \(\varvec{x}_{i}^{f,*}\), the final solution can be rewritten as \(S=\sum \limits _{i=1}^{k} \mathbf {P}_i^i\varvec{x}_{i}^{i,*} + \sum \limits _{i=1}^{k} \mathbf {P}_i^f\varvec{x}_{i}^{f,*} +\mathbf {P}_{k+1}\varvec{x}_{k+1}^{*}\), with \(\mathbf {P}_i^i\) and \(\mathbf {P}_i^f\) the columns in \(\mathbf {P}_i\) that correspond to \(\varvec{x}_{i}^{i,*}\) and \(\varvec{x}_{i}^{f,*}\) respectively. The term \(\sum \limits _{i=1}^{k} \mathbf {P}_i^f\varvec{x}_{i}^{f,*}\) that is not required by the k previous tasks may contribute to task \(k+1\) and affect its task performance. The minimization of the norm of \(\varvec{x}_{i}^{f}\) in the regulation term improves the performance of task \(k+1\) by making S closer to \(\sum \limits _{i=1}^{k} \mathbf {P}_i^i\varvec{x}_{i}^{i,*}+\mathbf {P}_{k+1}\varvec{x}_{k+1}^{*}\), where \(\mathbf {P}_i^i\varvec{x}_{i}^{i,*}\) are used to perform the k previous tasks and \(\mathbf {P}_{k+1}\varvec{x}_{k+1}^{*}\) is used to perform the \((k+1)\mathrm{{th}}\) task in the null-space of all the higher priority tasks.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Tan, Y. & Padois, V. Generalized hierarchical control. Auton Robot 40, 17–31 (2016). https://doi.org/10.1007/s10514-015-9436-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-015-9436-1

Keywords

Navigation