Skip to main content
Log in

Biologically inspired gait transition control for a quadruped walking robot

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

The gait transition of a quadruped walking robot is the switching of gait with non-periodic gait sequences between the periodic ones such as from walk to trot or trot to walk etc. It is very much important because the robot should change its gait depending upon the moving speed to enhance the efficiency of locomotion. In this paper, we present a quasi-static gait transition control method for a quadruped walking robot. It is based on the observation on the locomotion behaviors of quadruped animals, which show a sudden and discrete changes of gait patterns depending on the speed. The method predefines gait transition patterns, and gait sequences are determined according to the current and desired leg postures. It can be useful because the applicable to any type of walking controller. In this study, we implement the proposed method on a self-contained quadruped walking robot, called Artificial Digitigrade for Natural Environment Version III (AiDIN-III), and its effectiveness is experimentally validated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Alexander, R. M., & Jayes, A. S. (1983). A dynamic similarity hypothesis for the gaits of quadrupedal mammals. Journal of Zoology, 201, 135–152.

    Article  Google Scholar 

  • Alexander, R. M. (2003). Principle of animal locomotion. Princeton: Princeton University Press.

    Book  Google Scholar 

  • Allen, T. J., Quinn, R. D., Bachmann, R. J., & Ritzmann, R. E. (2003). Abstracted biological principles applied with reduced actuation improve mobility of legged vehicles. In Proceeding on IEEE/RSJ international conference on intelligent robots and systems, (pp. 1370–1375).

  • Aoi, S., Fujiki, S., Katayama, D., Yamashita, T., Kohda, T., Senda, K., & Tsuchiya, K. (2011). Experimental verification of hysteresis in gait transition of a quadruped robot driven by nonlinear oscillators with phase resetting. In Proceeding on IEEE/RSJ international conference on intelligent robots and systems, (pp. 2280–2285).

  • Aoi, S., Yamashita, T., Ichikawa, A., & Tsuchiya, K. (2010). Hysteresis in gait transition induced by changing waist joint stiffness of a quadruped robot driven by nonlinear oscillators with phase resetting. In Proceeding on IEEE/RSJ international conference on intelligent robots and systems, (pp. 1915–1920).

  • Berns, K., Ilg, W., Deck, M., Albiez, J., & Dillmann, R. (1999). Mechanical construction and computer architecture of the four-legged walking machine BISAM. IEEE/ASM transaction on mechatronics, 4(1), 32–38.

    Article  Google Scholar 

  • Cavagna, G. A., Thys, H., & Zamboni, A. (1976). The sources of external work in level walking and running. The Journal of Physiology, 262(3), 639–657.

    Article  Google Scholar 

  • Chew, C. M., Herr, H., Hu, J., Pratt, J., & Pratt, G. (1998). Virtual model based adaptive control of a biped walking robot. International Journal on Artificial Intelligence Tools, 8(3), 337–348.

    Google Scholar 

  • Choi, Y. J., Yon, B. J., & Oh, S. R. (2004). On the stability of indirect ZMP controller for biped robot systems. Proceeding of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2, 1971–1996.

    Google Scholar 

  • Fukuoka, Y., Kimura, H., & Cohen, A. H. (2003). Adaptive dynamic walking of a quadruped robot on irregulat terrain based on biological concepts. The International Journal of Robotics Research, 22(3–4), 187–202.

    Article  Google Scholar 

  • Ghasempoor., & Sepehri, N. (1995). A measure of machine stability for moving base manipulators. In Proceedings of IEEE international conference on robotics and automation, vol. 3, (pp. 2249–2254).

  • Griffin, T. M., Main, R. P., & Farley, C. T. (2004). Biomechanics of quadrupedal walking: how do four-legged animal achieve inverted pendulum-like movements? The Journal of Experimental Biology, 207, 3545–3558.

    Article  Google Scholar 

  • Hildebrand, M. (1965). Symmetrical gaits of horses. Science, 150, 701–708.

    Article  Google Scholar 

  • http://frc.kitech.re.kr/jinpoong.asp.

  • Hunang, Q., Yokosi, K., Shunji, K., Kaneko, K., Arai, H., Koyachi, N., et al. (2001). Planning walking pattern for biped robot. IEEE Transaction on Robotics and Automation, 17(3), 280–289.

    Article  Google Scholar 

  • Inagaki, K., & Kobayashi, H. (1993). A gait transition for quadruped walking machine. In Proceeding on IEEE/RSJ international conference on intelligent robots and systems, (pp. 525–531).

  • Kimura, H., & Fukuoka, Y. (2004). Biologically inspired adaptive dynamic walking in outdoor environment using a self-contained quadruped robot : Tekken2”. In Proceedings of IEEE/RSJ international conference on intelligent robots and systems, (pp. 986–991).

  • Koo, I. M., Trong, T. D., Kang, T. H., Vo, G. L., Song, Y. K., Lee, C. M., & Choi, H. R. (2007). Control of a quadruped walking robot based on biologically inspired approach. In Proceedings of ieee/rsj international conference on intelligent robots and systems, (pp. 2969–2974).

  • Koo, I. M., Kang, T. H., Vo, G. L., Trong, T. D., Song, Y. K., & Choi, H. R. (2009). Biologically inspired control of quadruped walking robot. International Journal of Control, Automation, and Systems, 7(4), 577–584.

    Article  Google Scholar 

  • Lin, B., & Song, S. (1993). Dynamic modeling, stability and energy efficiency of a quadruped walking machine. Proceedings of IEEE International Conference on Robotics and Automation, 3, 367–373.

    Article  Google Scholar 

  • Lin, J. N., & Song, S. M. (2002). Modeling gait transitions of quadrupeds and their generalization with CMAC neural networks. IEEE Transaction on System, Man, and Cybernetics-Part C: Application and Reviews, 32(3), 177–189.

    Article  Google Scholar 

  • Matos, V., Santos, C. P., & Pinto, C. M. A. (2009). A Brainstem-like modulation approach for gait transition in a quadruped robot. In Proceeding on IEEE/RSJ international conference on intelligent robots and systems, (pp. 2665–2670).

  • McGhee, R. B., & Frank, A. A. (1968). On the stability properties of quadruped creeping gaits. The International Journal of Mathematical Biosciences, 3, 331–351.

    Article  MATH  Google Scholar 

  • Messuri, D. A., & Klein, C. A. (1985). Automatic body regulation for maintaining stability of legged vehicle during rough terrain locomotion. IEEE Journal of Robotics and Automation, RA–1(3), 132–141.

    Article  Google Scholar 

  • Muybridge, E. (1957). Animals in motion. New York: Dover.

    Google Scholar 

  • Nagy, P. V., Desa, S., & Whittaker, W. L. (1994). Energy-based stability measures for reliable locomotion of statically stable walkers: Theory and application. The International Journal of Robotics Research, 13(3), 272–287.

    Article  Google Scholar 

  • Nunamaker, D. M., & Blauuer, P. D. (1985). Normal and abnormal gait, the international veterinary information service. New York, USA: Ithaca.

  • Papadopoulos, E. G., & Rey, D. A. (1996). A new measure of tipover stability margin for mobile manipulators. Proceedings of IEEE International Conference on Robotics and Automation, 4, 3111–3116.

    Article  Google Scholar 

  • Pratt, J., Chew, C. M., Torres, A., Dilworth, P., & Pratt, G. (2001). Virtual model control: An intuitive approach for bipedal locomotion. The International Journal of Robotics Research, 20(2), 129–143.

    Article  Google Scholar 

  • Raibert, M., Blankespoor, K., Nelson, G., & Playter, R. (2008). “BigDog, the rough terrain quadruped robot”. In Proceedings of international conference on federation of automatic control, (pp. 10822–10825).

  • Rebula, J. R., Neuhaus, P. D., Bonnlander, B. V., Johnson, M. J., & Pratt, J. E. (2007). A controller for the littledog quadruped walking on rough terrain. In Proceedings of IEEE international conference on robotics and automation, (pp. 1467–1473).

  • Remy, C. D., Buffinton, K., & Siegwart, R. (2010). Stability analysis of passive dynamic walking of quadrupeds. The International Journal of Robotics Research, 29(9), 1173–1185.

    Article  Google Scholar 

  • Santos, P. G., Garcia, E., & Estremera, J. (2006). Quadrupedal locomotion. London: Springer.

    MATH  Google Scholar 

  • Santos, C. P., & Matos, V. (2011). Gait transition and modulation in a quadruped robot: A brainstem-like modulation approach. The International Journal of Robotics and Autonomous Systems, 59, 620–634.

    Article  Google Scholar 

  • Schmiedeler, J. P., Marhefka, D. W., Orin, D. E., & Waldron, K. J. (2001). A study of quadruped gallops, NSF Design, Service and Manufacturing Grantees and Research Conference, (pp. 1–10).

  • Smith, J. A., & Poulakakis, I. (2004). Rotary gallop in the untethered quadrupedal robot scout II”. In Proceedings of IEEE/RSJ international conference on intelligent robots and systems, (pp. 2556–2561).

  • Song, S. M., & Waldron, K. J. (1989). Machines that walk. Cambridge, MA: MIT Press.

    Google Scholar 

  • Takeuchi, H. (1999). Development of MEL HORSE. In Proceeding of IEEE international conference on robotics and automation, (pp. 1057–1062).

  • Tran, D. T., Koo, I. M., Moon, H., Cho J. S., Park, S., & Choi, H. R. (2012). Motion control of a quadruped robot in unknown rough terrains using 3D spring damper leg model. In Proceedings of IEEE international conference on robotics and automation, (pp. 986–991).

  • Tran, D. T., Koo, I. M., Vo, G. L., Roh, S., Park, S., Moon, H., & Choi, H. R. (2009). A new method in modeling central pattern generators to control quadruped walking robots. In Proceedings of IEEE/RSJ international conference on intelligent robots and systems, (pp. 129–134).

  • Tsujita, K., Kobayashi, T., Inoura, T., & Masuda, T. (2008). Gait transition by tuning muscle tones using pneumatic actuators in quadruped locomotion. In Proceeding on IEEE/RSJ international conference on intelligent robots and systems, (pp. 2453–2458).

  • Yoneda, K., & Hirose, S. (1986). Dynamic and static fusion gait of a quadruped walking vehicle on a winding path. Proceedings of IEEE international conference on Robotics and Automation, 1, 143–148.

    Google Scholar 

  • Yoneda, K., & Hirose, S. (1995). Dynamic and static fusion gait of quadruped walking on a winding path. Advanced Robotics, 9(2), 125–136.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2014R1A2A2A01005241).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyouk Ryeol Choi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 17 KB)

Supplementary material 2 (wmv 27145 KB)

Supplementary material 3 (wmv 50851 KB)

Supplementary material 4 (wmv 41870 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koo, I.M., Trong, T.D., Lee, Y.H. et al. Biologically inspired gait transition control for a quadruped walking robot. Auton Robot 39, 169–182 (2015). https://doi.org/10.1007/s10514-015-9433-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-015-9433-4

Keywords

Navigation