Skip to main content
Log in

Trophallaxis within a robotic swarm: bio-inspired communication among robots in a swarm

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

This article presents a bio-inspired communication strategy for large-scale robotic swarms. The strategy is based purely on robot-to-robot interactions without any central unit of communication. Thus, the emerging swarm regulates itself in a purely self-organized way. The strategy is biologically inspired by the trophallactic behavior (mouth-to-mouth feedings) performed by social insects. We show how this strategy can be used in a collective foraging scenario and how the efficiency of this strategy can be shaped by evolutionary computation. Although the algorithm works stable enough that it can be easily parameterized by hand, we found that artificial evolution could further increase the efficiency of the swarm’s behavior. We investigated the suggested communication strategy by simulation of robotic swarms in several arena scenarios and studied the properties of some of the emergent collective decisions made by the robots. We found that our control algorithm led to a nonlinear, but graduated path selection of the emerging trail of loaded robots. They favored the shortest path, but not all robots converged to this trail, except in arena setups with extreme differences in the length of the two possible paths. Finally, we demonstrate how the flexibility of collective decisions that arise through this new strategy can be used in changing environments. We furthermore show the importance of a negative feedback in an environment with changing foraging targets. Such feedback loops allow outdated information to decay over time. We found that task efficiency is constrained by a lower and an upper boundary concerning the strength of this negative feedback.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beckers, R., Deneubourg, J.-L., Gross, S., & Pasteels, J. M. (1990). Collective decision making through food recruitment. Insectes Sociaux, 37, 258–267.

    Article  Google Scholar 

  • Beckers, R., Deneubourg, J. L., & Gross, S. (1992). Trails and U-turns in the selection of a path by the ant Lasius niger. Journal of Theoretical Biology, 159, 397–415.

    Article  Google Scholar 

  • Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence: from natural to artificial systems. Santa Fe Institute, Studies in the Sciences of Complexity.

  • Brooks, R. A. (1986). A robust layered control system for a mobile robot. IEEE Journal of Robotics and Automation, RA-2, 14–23.

    MathSciNet  Google Scholar 

  • Bruemmer, D. J., Dudenhoeffer, D. D., Mc.Kay, M. D., & Anderson, M. O. (2002). A robotic swarm for spill finding and perimeter formation. In Spectrum 2002, Reno, NV, USA, August 2002.

  • Camazine, S. (1993). The regulation of pollen foraging by honey bees: how foragers assess the colony’s need for pollen. Behavioral Ecology and Sociobiology, 32, 265–273.

    Article  Google Scholar 

  • Camazine, S., Crailsheim, K., Hrassnigg, N., Robinson, G. E., Leonhard, B., & Kropiunigg, H. (1998). Protein trophallaxis and the regulation of pollen foraging by honey bees (Apis mellifera L.). Apidologie, 29, 113–126.

    Article  Google Scholar 

  • Camazine, S., Deneubourg, J. L., Franks, N., Sneyd, J., Theraulaz, G., & Bonabeau, E. (2001). Self-organization in biological systems. Princeton: Princeton University Press.

    Google Scholar 

  • Caprari, G., Arras, K. O., & Siegwart, R. (2001). Robot navigation in centimeter range labyrinths. In Proceedings of the 5th international Heinz Nixdorf symposium. Autonomous minirobots for research and edutainment (pp. 83–92), Germany.

  • Crailsheim, K. (1992). The flow of jelly within a honeybee colony. Journal of Comparative Physiology B, 162, 681–689.

    Article  Google Scholar 

  • Crailsheim, K. (1998). Trophallactic interactions in the adult honeybee (Apis mellifera L.). Apidologie, 29, 97–112.

    Article  Google Scholar 

  • DeGrandi-Hoffman, G., & Hagler, J. (2000). The flow of incoming nectar through a honey bee (Apis mellifera L.) colony as revealed by a protein marker. Insectes Sociaux, 47, 302–306.

    Article  Google Scholar 

  • Ferber, J. (2001). In Multiagentensysteme (p. 549). Munich: Addison-Wesley.

    Google Scholar 

  • Grassé, P.-P. (1959). La reconstruction du nid et les coordinations interindividuelles chez Bellicositermes natalensis et Cubitermes sp. La théorie de la stigmergie:essai d’interprétation du comportement des termites constructeurs. Insectes Sociaux, 6, 41–83.

    Article  Google Scholar 

  • Grassé, P.-P. (1967). Nouvelles experiences sur le termite de Müller (Macrotermes mülleri) et considerations sur la théorie de la stigmergie. Insectes Sociaux, 14, 73–102.

    Article  Google Scholar 

  • Hamann, H., & Wörn, H. (2007a). An analytical and spatial model of foraging in a swarm of robots. In E. Sahin, W. M. Spears, & A. F. T. Winfield (Eds.) , Lecture notes in computer science : Vol. 4433. Swarm robotics; second SAB 2006 international workshop. (pp. 43–55). Berlin: Springer.

    Google Scholar 

  • Hamann, H., & Wörn, H. (2007b). A space- and time-continuous model of self-organizing robot swarms for design support. In Proceedings of the first IEEE international conference on self-adaptive and self-organizing systems (SASO’07), Boston, USA, July 2007.

  • Hayes, A. T., Martinoli, A., & Goodman, R. M. (2001). Swarm robotic odor localization: off-line optimization and validation with real robots. Robotica, 21, 427–441.

    Article  Google Scholar 

  • Kennedy, J., & Eberhart, R. C. (2001). Swarm intelligence. San Mateo: Morgan Kaufmann.

    Google Scholar 

  • Karsai, I. (1999). Decentralized control of construction behavior in paper wasps: an overview of the stigmergy approach. Artificial Life, 5, 117–136.

    Article  Google Scholar 

  • Kornienko, S., Kornienko, O., & Levi, P. (2005a). Minimalistic approach towards communication and perception in microrobotic swarms. In Proceedings of IEEE/RSJ international conference on intelligent robots and systems (pp. 4005–4011), Edmonton, AB, Canada.

  • Kornienko, S., Kornienko, O., & Levi, P. (2005b). Collective AI: context awareness via communication. In Proceedings of the nineteenth international joint conference on artificial intelligence (IJCAI 2005) (pp. 1464–1470), Edinburgh, Scotland.

  • Lerman, K., & Galstyan, A. (2001). A general methodology for mathematical analysis of multi-agent systems (Technical Report ISI-TR-529).

  • Lerman, K., Galstyan, A., Martinoli, A., & Ijspeert, A. J. (2001). A macroscopic analytical model for collaboration in distributed robotic systems. Artificial Life, 7(4), 375–393.

    Article  Google Scholar 

  • Martinoli, A., Easton, K., & Agassounon, W. (2004). Modeling swarm robotic systems: a case study in collaborative distributed manipulation. Journal of Robotics Research, 23, 415–436.

    Article  Google Scholar 

  • McLurkin, J. D. (2004). Stupid robot tricks: a behavior-based distributed algorithm library for programming swarms of robots. Master thesis at the MIT.

  • McLurkin, J., & Smith, J. (2004). Distributed algorithms for dispersion in indoor environments using a swarm of autonomous mobile robots. In Proceedings of distributed autonomous robotic systems conference, Toulouse, France, 23–25 June 2004.

  • Payton, D., Daily, M., Estowski, R., Howard, M., & Lee, C. (2001). Pheromone robotics. Autonomous Robots, 11, 319–324.

    Article  MATH  Google Scholar 

  • Payton, D., Estkowski, R., & Howard, M. (2003). Compound behaviors in pheromone robotics. Robotics and Autonomous Systems, 44, 229–240.

    Article  Google Scholar 

  • Payton, D., Estkowski, R., & Howard, M. (2005). Pheromone robotics and the logic of virtual pheromones. In Lecture notes in computer science (Vol. 3342, pp. 45–57). Berlin: Springer.

    Google Scholar 

  • Rechenberg, I. (1970). Evolutionsstrategie. Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Frommann Holzboog (1973). ISBN 3-7728-0373-3 (Dissertation von 1970).

  • Seeley, T. D., Camazine, S., & Sneyd, J. (1991). Collective decision-making in honey bees: how colonies choose among nectar sources. Behavioural Ecology and Sociobiology, 28, 277–290.

    Article  Google Scholar 

  • Seyfried, J., Szymanski, M., Bender, N., Estana, R., Thiel, M., & Wörn, H. (2005). The I-SWARM project: intelligent small world autonomous robots for micro-manipulation. In Lecture notes in computer science (Vol. 3342, pp. 70–83). Berlin: Springer.

    Google Scholar 

  • Schmickl, T., & Crailsheim, K. (2004). Costs of environmental fluctuations and benefits of dynamic decentralized foraging decisions in honeybees. Adaptive Behavior, 12, 263–277.

    Article  Google Scholar 

  • Schmickl, T., & Crailsheim, K. (2006). Trophallaxis among swarm-robots: a biological inspired strategy for swarm robotics. In Proceedings of BioRob 2006, biomedical robotics and biomechatronics, Pisa, Italy. ISBN 1-4244-0040-6.

  • Schmickl, T., & Crailsheim, K. (2007). A navigation algorithm for swarm robotics inspired by slime mold aggregation. In E. Sahin, W. M. Spears, & A. F. T. Winfield (Eds.), Swarm robotics; second SAB 2006 international workshop. Lecture notes in computer science (Vol. 4433, pp. 1–13). Berlin: Springer.

    Google Scholar 

  • Schmickl, T., Thenius, R., & Crailsheim, K. (2005). Simulating swarm intelligence in honey bees: foraging in differently fluctuating environments. In Proceedings of the genetic and evolutionary computation conference (GECCO) (pp. 274–274), Washington, DC, USA.

  • Schmickl, T., Möslinger, Ch., & Crailsheim, K. (2007). Collective perception in a robot swarm. In E. Sahin, W. M. Spears, & A. F. T. Winfield (Eds.), Swarm robotics; second SAB 2006 international workshop. Lecture notes in computer science (Vol. 4433, pp. 144–157). Berlin: Springer.

    Google Scholar 

  • Song, P., & Kumar, V. (2002). A potential field based approach to multi-robot manipulation. In Proceedings of the 2002 IEEE international conference on robotics and automation, Washington, DC, USA, May 2002.

  • Soysal, O., & Sahin, E. (2007). A macroscopic model for self-organized aggregation in swarm robotic systems. In E. Sahin, W. M. Spears, & A. F. T. Winfield (Eds.), Swarm robotics; second SAB 2006 international workshop. Lecture notes in computer science (Vol. 4433, pp. 43–55). Berlin: Springer.

    Google Scholar 

  • Stoy, K. (2006). How do construct dense objects with self-reconfigurable robots. Springer Tracts in Advanced Robotics, 22, 27–37.

    Article  Google Scholar 

  • Sugawara, K., Kazama, T., & Watanabe, T. (2004). Foraging behavior of interacting robots with virtual pheromone. In Proceedings of IEEE/RSJ international conference on intelligent robots and systems (pp. 3074–3079), Sendai, Japan.

  • Sumpter, D. J. T., & Beekman, M. (2003). From nonlinearity to optimality: pheromone trail foraging by ants. Animal Behaviour, 66, 273–280.

    Article  Google Scholar 

  • Sumpter, D. J. T., & Pratt, S. C. (2003). A modelling framework for understanding social insect foraging. Behavioural Ecology and Sociobiology, 53, 131–144.

    Google Scholar 

  • Trianni, V., Groß, R., Labella, T. H., Sahin, E., & Dorigo, M. (2003). Evolving aggregation behaviors in a swarm of robots. In Lecture notes of artificial intelligence (Vol. 2801, pp. 865–874). Berlin: Springer.

    Google Scholar 

  • Valdastri, P., Corradi, P., Menciassi, A., Schmickl, T., Crailsheim, K., Seyfried, J., & Dario, P. (2006). Micromanipulation, communication and swarm intelligence issues in a microrobotic platform. Robotics and Automation Systems, 54, 789–804.

    Article  Google Scholar 

  • Webb, B., & Reeve, R. (2003). Referent or redundant: integration of phototaxis and optomotor behavior in crickets and robots. Adaptive Behaviour, 11(3), 137–158.

    Article  Google Scholar 

  • Wilensky, U. (1999). NetLogo. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL. http://ccl.northwestern.edu/netlogo/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Schmickl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmickl, T., Crailsheim, K. Trophallaxis within a robotic swarm: bio-inspired communication among robots in a swarm. Auton Robot 25, 171–188 (2008). https://doi.org/10.1007/s10514-007-9073-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-007-9073-4

Keywords

Navigation