Skip to main content
Log in

Periodic motion in perturbed elliptic oscillators revisited

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

We analytically study the Hamiltonian system in \(\mathbb{R}^{4}\) with Hamiltonian

$$\begin{aligned} H= \frac{1}{2} \bigl(p_{x}^{2}+p_{y}^{2} \bigr)+\frac{1}{2} \bigl(\omega_{1}^{2} x ^{2}+\omega_{2}^{2} y^{2} \bigr)- \varepsilon V(x,y) \end{aligned}$$

being \(V(x,y)=-(x^{2}y+ax^{3})\) with \(a\in\mathbb{R}\), where \(\varepsilon\) is a small parameter and \(\omega_{1}\) and \(\omega_{2}\) are the unperturbed frequencies of the oscillations along the \(x\) and \(y\) axis, respectively. Using averaging theory of first and second order we analytically find seven families of periodic solutions in every positive energy level of \(H\) when the frequencies are not equal. Four of these seven families are defined for all \(a\in\mathbb{R}\) whereas the other three are defined for all \(a\ne0\). Moreover, we provide the shape of all these families of periodic solutions. These Hamiltonians may represent the central parts of deformed galaxies and thus have been extensively used and studied mainly numerically in order to describe local motion in galaxies near an equilibrium point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9-th printing, p. 17. Dover, New York (1972).

    MATH  Google Scholar 

  • Alfaro, F., Llibre, J., Pérez-Chavela, E.: A class of galactic potentials: periodic orbits and integrability. Astrophys. Space Sci. 344, 39 (2013)

    Article  ADS  MATH  Google Scholar 

  • Barbanis, B.: Escape regions of a quartic potential. Celest. Mech. Dyn. Astron. 48, 57 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Belmonte, C., Boccaletti, D., Pucacco, G.: On the orbit structure of the logarithmic potential. Astrophys. J. 669, 202 (2007)

    Article  ADS  Google Scholar 

  • Buică, A., Llibre, J.: Averaging methods for finding periodic orbits via Brouwer degree. Bull. Sci. Math. 128, 7 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Caranicolas, N.D.: A map for a group of resonant cases in quartic galactic Hamiltonian. J. Astrophys. Astron. 22, 309 (2001)

    Article  ADS  Google Scholar 

  • Caranicolas, N.D.: Orbits in global and local galactic potentials. Astron. Astrophys. Trans. 23, 241 (2004)

    Article  ADS  Google Scholar 

  • Caranicolas, N.D., Karanis, G.I.: Motion in a potential creating a weak bar structure. Astron. Astrophys. 342, 389 (1999)

    ADS  Google Scholar 

  • Caranicolas, N.D., Innanen, K.A.: Periodic motion in perturbed elliptic oscillators. Astron. J. 103, 1308 (1992)

    Article  ADS  Google Scholar 

  • Caranicolas, N.D., Zotos, N.D.: Investigating the nature of motion in 3D perturbed elliptic oscillators displaying exact periodic orbits. Nonlinear Dyn. 69, 1795 (2012)

    Article  MathSciNet  Google Scholar 

  • Contopoulos, G.: Orbits in highly perturbed dynamical systems. I. Periodic orbits. Astron. J. 75, 96 (1970a)

    Article  ADS  MathSciNet  Google Scholar 

  • Contopoulos, G.: Orbits in highly perturbed dynamical systems. II. Stability of periodic orbits. Astron. J. 75, 108 (1970b)

    Article  ADS  MathSciNet  Google Scholar 

  • Contopoulos, G., Moutsoulas, M.: Resonance cases and small divisors in a third integral of motion II. Astron. J. 70, 817 (1965)

    Article  ADS  Google Scholar 

  • Contopoulos, G., Zikides, M.: Periodic orbits and ergodic components of a resonant dynamical system. Astron. Astrophys. 90, 198 (1980)

    ADS  MathSciNet  MATH  Google Scholar 

  • Cushman, R.H., Dullin, H.R., Hanffmann, H., Schmidt, S.: The \(1: \pm2\) resonance. Regul. Chaotic Dyn. 12, 642 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Davoust, E.: Periodic orbits in a two-dimensional galactic potential. Celest. Mech. 31, 303 (1983)

    Article  ADS  MATH  Google Scholar 

  • Elipe, A., Miller, B., Vallejo, M.: Bifurcations in a non-symmetric cubic potential. Astron. Astrophys. 300, 722 (1995)

    ADS  Google Scholar 

  • Giorgilli, A., Galgani, L.: From integrals from an autonomous Hamiltonian system near an equilibrium point. Celest. Mech. 17, 267 (1978)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Hénon, M., Heiles, C.: The applicability of the third integral of motion: some numerical experiments. Astron. J. 69, 73 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  • Karanis, G.I., Vozikis, L.C.: Fast detection of chaotic behavior in galactic potentials. Astron. Nachr. 329, 403 (2007)

    Article  ADS  Google Scholar 

  • Lang, S.: Algebra, 3rd. edn. Addison-Wesley, Reading (1993)

    MATH  Google Scholar 

  • Lloyd, N.G.: Degree Theory. Cambridge Trends in Mathematics, vol. 73. Cambridge University Press, Cambridge (1978)

    MATH  Google Scholar 

  • Marchesiello, A., Pucacco, G.: The symmetric \(1:2\) resonance. Eur. Phys. J. Plus 128(21), 14 (2013)

    MATH  Google Scholar 

  • Miller, B.R.: The Lissajous transformation III. Parametric bifurcations. Celest. Mech. Dyn. Astron. 51, 251 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Olver, P.: Classical Invariant Theory. London Math. Soc. Student Texts, vol. 44. Cambridge University Press, New York (1999)

    Book  MATH  Google Scholar 

  • Pucacco, G., Marchesiello, A.: An energy-momentum map for the time-reversal symmetric \(1:1\) resonance with \(\mathbb{Z}_{2}\times\mathbb{Z}_{2}\) symmetry. Physica D 271, 10 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Schmidt, S., Dullin, H.R.: Dynamics near the \(p:\pm q\) resonance. Physica D 239, 1884 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Verhulst, F.: Nonlinear Differential Equations and Dynamical Systems. Springer, Berlin (1991)

    MATH  Google Scholar 

  • Zotos, E.E.: Application of new dynamical spectra of orbits in Hamiltonian systems. Nonlinear Dyn. 69, 2041 (2012a)

    Article  MathSciNet  Google Scholar 

  • Zotos, E.E.: The fast norm vector indicator (FNVI) method: a new dynamical parameter for detecting order and chaos in Hamiltonian systems. Nonlinear Dyn. 70, 951 (2012b)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first two authors are partially supported by MINECO grants number MTM2013-40998-P. The second author is also supported by an AGAUR grant number 2014SGR-568, and the grants FP7-PEOPLE-2012-IRSES 318999 and 316338. The third author is partially supported by FCT/Portugal through UID/ MAT/04459/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Llibre.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corbera, M., Llibre, J. & Valls, C. Periodic motion in perturbed elliptic oscillators revisited. Astrophys Space Sci 361, 348 (2016). https://doi.org/10.1007/s10509-016-2927-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-016-2927-5

Keywords

Navigation