Skip to main content
Log in

Motion in the ER3BP with an oblate primary and a triaxial stellar companion

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

The triangular points of the elliptic restricted three-body problem under an oblate primary and a triaxial and radiating secondary are investigated. Their positions and stability are found to be affected by the eccentricity, semi-major axis, oblateness, triaxiality and radiation pressure. Using Low and High Mass X-ray binaries (LMXB and HMXB), we highlight the effects of the said parameters on the positions of the triangular points of PSR J1903+0327, CEN X-4 and RXJ 04050.01.5658. The triangular points are found to be stable for \(0 < \mu < \mu_{C}\); where \(\mu\) is the mass ratio \(( \mu \le \frac{1}{2} )\). The effects of the parameters on the regions of stability are shown graphically within the stable interval, highlighting their destabilizing tendencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abouelmagd, E.I.: Existence and stability of triangular points in the restricted three-body problem with numerical applications. Astrophys. Space Sci. 342(1), 45–53 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  • Abouelmagd, E.I., El-Shaboury, S.M.: Periodic orbits under combined effects of oblateness and radiation in the restricted problem of three-bodies. Astrophys. Space Sci. 341(2), 331 (2012)

    Article  ADS  MATH  Google Scholar 

  • Arrendondo, J.A., Guo, J., Jianguag, S.C., Tamayo, C.: On the restricted three-body problem with oblate primaries. Astrophys. Space Sci. 341, 315 (2012)

    Article  ADS  Google Scholar 

  • Arutyunyan, G.G., Sedrakyan, D.M., Chubaryan, E.V.: Rotating white dwarfs in the general relativity theory. Astrophysics 7, 274 (1971)

    Article  ADS  Google Scholar 

  • Birkhoff: Dynamical system. American Mathematical Society, New York (1927)

    Book  MATH  Google Scholar 

  • Bruno, A.D.: The Restricted 3-Body Problem, Plane Periodic Orbits. Walter de Gruyter, Berlin (1994)

    Book  Google Scholar 

  • Bazso, A.: In: 43rd Lunar and Planetary Science Conference (2012)

    Google Scholar 

  • Belbruno, E., Topputo, F., Gidea, M.: Resonance transitions associated to weak capture in the restricted three-body problem. Adv. Space Res. 42, 330–1351 (2008). 2008. doi:10.1016/j.asr.2008.01.018

    Article  Google Scholar 

  • Boshkayev, K., Quevedo, H., Ruffini, R.: Gravitational field of compact objects in general relativity. Phys. Rev. D 86, 064043 (2012)

    Article  ADS  Google Scholar 

  • Chenciner, A.: Scholarpedia 2(10), 2111 (2007)

    Article  ADS  Google Scholar 

  • Danby, J.M.A.: Fundamentals of Celestial Mechanics, 2nd edn. Willmann-Bell, Virginia (1988)

    Google Scholar 

  • Domiciano de Souza, A., Kervella, P., Jankov, S., et al.: Astron. Astrophys. 407, L47 (2003)

    Article  ADS  Google Scholar 

  • Dufton, P.L., Dunstall, P.R., Evans, C.J., et al.: Astrophys. J. 743, L22 (2011)

    Article  ADS  Google Scholar 

  • El-Shaboury, S.M., El-Tantawy, M.A.: Eulerian librations points of restricted problem of three oblate spheroid. Earth Moon Planets 63, 23–28 (1993). doi:10.1007/BF00572136

    Article  ADS  MATH  Google Scholar 

  • El-Shaboury, S.M., Shaker, M.O., El-Dessoky, A.E., El-Tantawy, M.A.: The libration points of axisymmetric satellite in the gravitational field of two triaxial rigid bodies. Earth Moon Planets 52, 69–81 (1991)

    Article  ADS  MATH  Google Scholar 

  • Fokker, A.D.: A consequence of Einstein’s theory of gravitation. The geodesic precession. Ned. Akad. Wet. Proc. 23(1), 729–738 (1921)

    Google Scholar 

  • Gutzwiller, M.: Rev. Mod. Phys. 70(2) (1998)

  • Heyl, J.S.: Gravitational radiation from strongly magnetized white dwarfs. Mon. Not. R. Astron. Soc. 317, 310–314 (2000)

    Article  ADS  Google Scholar 

  • Hartle, J.B.: Slowly rotating relativistic stars. I. Equations of structure. Astrophys. J. 150, 1005–1031 (1967)

    Article  ADS  Google Scholar 

  • Hartle, J.B.: Astrophys. J. 153, 807 (1968)

    Article  ADS  Google Scholar 

  • Iorio, L.: Dynamical determination of the quadrupole mass moment of a white dwarf. Astrophys. Space Sci. 310, 73–76 (2007a)

    Article  ADS  Google Scholar 

  • Iorio, L.: Dynamical constraints on some orbital and physical properties of the WD0137-349A/B binary system. Astrophys. Space Sci. 312, 337–341 (2007b)

    Article  ADS  Google Scholar 

  • Iorio, L.: Int. J. Mod. Phys. D 17, 815 (2008a)

    Article  ADS  MathSciNet  Google Scholar 

  • Iorio, L.: Astrophys. Space Sci. 318, 51 (2008b)

    Article  ADS  Google Scholar 

  • Iorio, L.: Orbital motions as gradiometer for post-Newtonian tidal effects. Astrophys. Space Sci. (2014). doi:10.3389/fspas.2014.0003

    Google Scholar 

  • Kalantonis, V.S., Perdios, E.A., Perdiou, A.E., Vrahatis, M.N.: Computing with certainty individual members of families of periodic orbits of a given period. Celest. Mech. Dyn. Astron. 80, 81 (2008)

    Article  ADS  MATH  Google Scholar 

  • Kumar, S., Ishwar, B.: Solutions of generalized photogravitational elliptic restricted three-body problem. AIP Conf. Proc. 1146, 456 (2009)

    Article  ADS  Google Scholar 

  • Kunitsyn, A.L.: The stability of collinear libration points in the photogravitational three-body problem. J. Appl. Math. Mech. 65(4), 703–706 (2001)

    Article  MathSciNet  Google Scholar 

  • Laarakkers, W.G.: Quadrupole moments of rotating neutron stars. Astrophys. J. 512, 282 (1999)

    Article  ADS  Google Scholar 

  • Lagrange: Collected Works Paris. VI, 229 (1772)

  • Laplace, Delaunay: Memoire sur la theorie de la Lune. Mem. De l’des Sci., 28–29 (1867)

  • McAlister, H.A., ten Brummelaar, T.A., Gies, D.R., et al.: Astrophys. J. 628, 439 (2005)

    Article  ADS  Google Scholar 

  • Meilland, A., Stee, P., Chesneau, O., Jones, C.: Astron. Astrophys. 505, 687 (2009)

    Article  ADS  Google Scholar 

  • Narayan, A., Ramesh, C.: Effects of photogravitational and oblateness on the triangular Lagrangian points in the elliptical restricted three-body problem. Int. J. Pure Appl. Math. 68, 201 (2011a)

    MathSciNet  MATH  Google Scholar 

  • Narayan, A., Ramesh, C.: Stability of triangular equilibrium points in elliptical restricted three-body problem under the effects of photogravitational and oblateness of primaries. Int. J. Pure Appl. Math. 70, 735 (2011b)

    Google Scholar 

  • Narayan, A., Krishna, K.P., Sandip, K.S.: Effects of radiation and triaxiality of triangular equilibrium points in elliptical restricted three-body problem. Int. J. Adv. Astron. 3(2), 97–106 (2015)

    Article  Google Scholar 

  • Papoyan, V.V., Sedrakyan, D.M., Chubaryan, E.V.: Newtonian theory of rapidly rotating white dwarfs. Astrophysics 7, 55 (1971)

    Article  ADS  Google Scholar 

  • Poincare: Les methodes nouevelles de la mechanique ce’leste guthier villars. Paris, Chap. V, 250 (1892)

  • Romagnoli, D., Circi, C.: Earth-Moon weak stability boundaries in the restricted three and four-body problem. Celest. Mech. Dyn. Astron. 103, 79–103 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Renzetti, G.: Exact geodetic precession of the orbit of a two-body gyroscope in geodesic motion about a third mass. Earth Moon Planets 109(1–4), 55–59 (2012)

    Article  ADS  MATH  Google Scholar 

  • Sahoo, S.K., Ishwar, B.: Stability of collinear equilibrium points in the generalized photogravitational elliptic restricted three-body problem. Bull. Astron. Soc. India 28, 579 (2000)

    ADS  Google Scholar 

  • Safiya, A.B., Sharma, R.K.: On the dichotomy in the Earth-Moon system restricted three-body problem. Astrophys. Space Sci. 341, 343 (2012). doi:10.1007/s10509-012-1103-9

    Article  ADS  Google Scholar 

  • Sharma, R.K.: Astrophys. Space Sci. 135, 271 (1987)

    Article  ADS  Google Scholar 

  • Sharma, R.K., Rao, P.V.S.: Stationary solutions and their characteristic exponents in the restricted three-body problem when the more massive primary is an oblate spheroid. Celest. Mech. 13, 137–149 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Shibata, M.: Effects of the quadrupole moment of rapidly rotating neutron stars on the motion of the accretion disks. Prog. Theor. Phys. 99, 69–78 (1998)

    Article  ADS  Google Scholar 

  • Singh, J., Taura, J.J.: Motion in the generalized restricted three-body problem. Astrophys. Space Sci. 343, 95 (2013)

    Article  ADS  MATH  Google Scholar 

  • Singh, J., Umar, A.: Motion in the photogravitational elliptic restricted three-body problem under an oblate primary. Astron. J. 143, 109 (2012a)

    Article  ADS  Google Scholar 

  • Singh, J., Umar, A.: On the stability of triangular equilibrium points in the elliptic R3BP under radiating and oblate primaries. Astrophys. Space Sci. 341, 349–358 (2012b)

    Article  ADS  MATH  Google Scholar 

  • Singh, J., Umar, A.: On “out of plane” equilibrium points in the elliptic restricted three-body problem with radiating and oblate primaries. Astrophys. Space Sci. 344, 13–19 (2013a)

    Article  ADS  MATH  Google Scholar 

  • Singh, J., Umar, A.: Collinear equilibrium points in the elliptic R3BP with oblateness and radiation. Adv. Space Res. 52, 1489–1496 (2013b)

    Article  ADS  Google Scholar 

  • Singh, J., Umar, A.: On motion around the collinear libration points in the elliptic restricted three-body problem with a bigger triaxial primary. New Astron. 29, 36–41 (2014a)

    Article  ADS  Google Scholar 

  • Singh, J., Umar, A.: The collinear libration points in the elliptic R3BP with a triaxial primary and an oblate secondary. Int. J. Astron. Astrophys. 4, 391–398 (2015)

    Article  Google Scholar 

  • Szebehely, V.: Theory of Orbits. The Restricted Problem of Three-Bodies. Academic Press, New York (1967)

    MATH  Google Scholar 

  • Szenkovits, F., Mako, Z.: Publ. Astron. Dep. Eötvös Univ. 15, 221 (2005)

    Google Scholar 

  • Topputo, F., Vasile, M., Bernelli-Zazzara, F.: Earth-to-Moon low energy transfers targeting L1 hyperbolic transit orbits. Ann. N.Y. Acad. Sci. 1065, 55–76 (2005)

    Article  ADS  Google Scholar 

  • Tkhai, N.V.: J. Appl. Math. Mech. 76, 441 (2012)

    Article  MathSciNet  Google Scholar 

  • Valtonen, M., Karttunen, H.: The Three-Body Problem. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  • Vishnu Namboori, N.I., Sudheer Reedy, D., Sharma, R.K.: Effect of oblateness and radiation pressure on angular frequencies at collinear points. Astrophys. Space Sci. 318, 161 (2008)

    Article  ADS  Google Scholar 

  • Van Belle, G.T., Ciardi, D.R., Thompson, R.R., Akeson, R.L., Lada, E.A.: Astrophys. J. 559, 1155 (2001)

    Article  ADS  Google Scholar 

  • Yoon, J., Peterson, D.M., Kurucz, R.L., Zagarello, R.J.: Astrophys. J. 708, 71 (2010)

    Article  ADS  Google Scholar 

  • Zimovshchikov, A.S., Tkhai, V.N.: Instability of libration points and resonance phenomena in the photogravitational elliptic restricted three-body problem. Sol. Syst. Res. 38, 155–164 (2004)

    Article  ADS  Google Scholar 

  • Zimovshchikov, A.S., Tkhai, V.N.: Stability diagrams for a heterogeneous ensemble of particles at the collinear libration points of the photogravitational three-body problem. J. Appl. Math. Mech. 74(2), 158–163 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aminu Abubakar Hussain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umar, A., Hussain, A.A. Motion in the ER3BP with an oblate primary and a triaxial stellar companion. Astrophys Space Sci 361, 344 (2016). https://doi.org/10.1007/s10509-016-2918-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-016-2918-6

Keywords

Navigation