Skip to main content
Log in

Do pulsar radio fluxes violate the inverse-square law?

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

Singleton et al. (arXiv:0912.0350, 2009) have argued that the flux of pulsars measured at 1400 MHz shows an apparent violation of the inverse-square law with distance (\(r\)), and instead the flux scales as \(1/r\). They deduced this from the fact that the convergence error obtained in reconstructing the luminosity function of pulsars using an iterative maximum likelihood procedure is about \(10^{5}\) times larger for a distance exponent of two (corresponding to the inverse-square law) compared to an exponent of one. When we applied the same technique to this pulsar dataset with two different values for the trial luminosity function in the zeroth iteration, we find that neither of them can reproduce a value of \(10^{5}\) for the ratio of the convergence error between these distance exponents. We then reconstruct the differential pulsar luminosity function using Lynden-Bell’s \(C^{-}\) method after positing both inverse-linear and inverse-square scalings with distance. We show that this method cannot help in discerning between the two exponents. Finally, when we tried to estimate the power-law exponent with a Bayesian regression procedure, we do not get a best-fit value of one for the distance exponent. The model residuals obtained from our fitting procedure are larger for the inverse-linear law compared to the inverse-square law. Moreover, the observed pulsar flux cannot be parameterized only by power-law functions of distance, period, and period derivative. Therefore, we conclude from our analysis using multiple methods that there is no evidence that the pulsar radio flux at 1400 MHz violates the inverse-square law or that the flux scales inversely with distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. http://www.atnf.csiro.au/research/pulsar/psrcat/expert.html.

References

Download references

Acknowledgements

We would like to thank John Singleton for a stimulating talk at the 2011 AAS meeting, which provided the impetus for this work. We are grateful to Chris Willmer for explaining the usage of SWML in extragalactic astronomy and also to Jim Cordes for providing us the data for the fractional distance errors as a function of galactic longitude from the NE2001 model. We would like to thank I-Non Chiu, Alec Habig, Krishnamoorthy Iyer, and the anonymous referee for critical feedback on the paper draft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shantanu Desai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Desai, S. Do pulsar radio fluxes violate the inverse-square law?. Astrophys Space Sci 361, 138 (2016). https://doi.org/10.1007/s10509-016-2726-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-016-2726-z

Keywords

Navigation