Skip to main content

Advertisement

Log in

Classical and quantum Reissner-Nordström black hole thermodynamics and first order phase transition

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

First we consider classical Reissner-Nordström black hole (CRNBH) metric which is obtained by solving Einstein-Maxwell metric equation for a point electric charge \(e\) inside of a spherical static body with mass \(M\). It has 2 interior and exterior horizons. Using Bekenstein-Hawking entropy theorem we calculate interior and exterior entropy, temperature, Gibbs free energy and heat capacity at constant electric charge. We calculate first derivative of the Gibbs free energy with respect to temperature which become a singular function having a singularity at critical point \(M_{c}=\frac{2|e|}{\sqrt{3}}\) with corresponding temperature \(T_{c}=\frac{1}{24\pi\sqrt{3}|e|}\). Hence we claim first order phase transition is happened there. Temperature same as Gibbs free energy takes absolutely positive (negative) values on the exterior (interior) horizon. The Gibbs free energy takes two different positive values synchronously for \(0< T< T_{c}\) but not for negative values which means the system is made from two subsystem. For negative temperatures entropy reaches to zero value at \(T\to-\infty\) and so takes Bose-Einstein condensation single state. Entropy increases monotonically in case \(0< T< T_{c}\). Regarding results of the work presented at Wang and Huang (Phys. Rev. D 63:124014, 2001) we calculate again the mentioned thermodynamical variables for remnant stable final state of evaporating quantum Reissner-Nordström black hole (QRNBH) and obtained results same as one in case of the CRNBH. Finally, we solve mass loss equation of QRNBH against advance Eddington-Finkelstein time coordinate and derive luminosity function. We obtain switching off of QRNBH evaporation before than the mass completely vanishes. It reaches to a could Lukewarm type of RN black hole which its final remnant mass is \(m_{final}=|e|\) in geometrical units. Its temperature and luminosity vanish but not in Schwarzschild case of evaporation. Our calculations can be take some acceptable statements about information loss paradox (ILP).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Almheiri, A., Marolf, D., Polchinski, J., Sully, J.: Black holes: complementarity or firewalls? J. High Energy Phys. 1302, 062 (2013). 1207.3123 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  • Bekenstein, J.D.: Black holes and entropy. Phys. Rev. D 7, 2333 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  • Bekenstein, J.D.: Generalized second law of thermodynamics in black hole physics. Phys. Rev. D 9, 3292 (1974)

    Article  ADS  Google Scholar 

  • Braun, S., Ronzheimer, J.P., Schreiber, M., Hodgman, S.S., Bloch, T.R.I., Schneider, U.: Negative absolute temperature for motional degrees of freedom. Science 339, 52 (2013). arXiv:1211.0545v1

    Article  ADS  Google Scholar 

  • Carlip, S.: Black hole thermodynamics (2015). 1410.1486v2 [gr-qc]

  • Carr, L.D.: Negative temperatures? Science 339, 6115(42) (2013)

    MathSciNet  Google Scholar 

  • Cembranos, J.A.R., de la Curz-Dombriz, A., Jimeno Romero, P.: Kerr-Newman black holes in f(R) theories (2011). 1109.4519 [gr-qc]

  • Chevalier, C., Bustamante, M., Debbasch, F.: Thermal statistical ensembles of black holes. Physica A 376, 293 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  • Clayton, M.A., Moffat, J.W.: Dynamical mechanism for varying light velocity as a solution to cosmological problems. Phys. Lett. B 460, 263 (1999)

    Article  ADS  Google Scholar 

  • Davis, P.C.W.: The thermodynamic theory of black holes. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 353, 499 (1977)

    Article  ADS  Google Scholar 

  • Dicke, R.: Gravitation without a principle of equivalence. Rev. Mod. Phys. 29, 363 (1957)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Einstein, A.: Jahrbuch für Radioaktivität und Elektronik, vol. 4, pp. 411–462 (1907)

    Google Scholar 

  • Gamal, G., Nashed, L.: Kerr-NUT black hole thermodynamics in f(T) gravity theories. Eur. Phys. J. Plus 130, 124 (2015)

    Article  Google Scholar 

  • Ghaffarnejad, H.: Quantum field backreaction corrections and remnant stable evaporating Schwarzschild-de Sitter dynamical black hole. Phys. Rev. D 75, 084009 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  • Ghaffarnejad, H.: Reissner-Nordström black hole thermodynamics and second order phase transition (2013). 1308.1323v1 [Physics.gen-ph]

  • Ghaffarnejad, H., Neyad, H., Mojahedi, M.A.: Evaporating quantum Lukewarm black holes final state from back-reaction corrections of quantum scalar fields. Astrophys. Space Sci. 346, 497 (2013)

    Article  ADS  MATH  Google Scholar 

  • Gonzalez-Diaz, P.F.: Dark energy and supermassive black holes. Phys. Rev. D 70, 063530 (2004). astro-ph/0408450

    Article  ADS  MathSciNet  Google Scholar 

  • Hawking, S.W.: Black hole explosions? Nature 248, 30 (1974)

    Article  ADS  Google Scholar 

  • Hawking, S.W., Hartle, J.B.: Energy and angular momentum flow into a black hole. Commun. Math. Phys. 27, 283 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  • Hawking, S.W., Laflamme, R.: Phys. Lett. B 209, 39 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  • Huang, K.: Introduction to Statistical Physics. Taylor and Francis, London (2001)

    MATH  Google Scholar 

  • Isham, C.J., Penrose, R., Sciama, W.D. (eds.): Quantum Gravity: Oxford Second Symposium. Oxford University Press, Oxford (1981)

    Google Scholar 

  • Lousto, C.: The fourth law of black hole thermodynamics. Nucl. Phys. B 410, 155 (1993). Erratum: Ibid. 446, 433 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Lousto, C.: Some thermodynamic aspects of black holes and singularities. Int. J. Mod. Phys. D 6, 575 (1997). gr-qc/9601006

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Meitei, I.A., Singh, K.Y., Singh, T.I., Ibohal, N.: Phase transition in the Reissner-Nordstrom black hole. Astrophys. Space Sci. 327, 67 (2010)

    Article  ADS  MATH  Google Scholar 

  • Melchiorri, A., Mersini, L., Ödman, C.J., Trodden, M.: The state of the dark energy equation of state (2003). astro-ph/0211522v3

  • Mosk, A.P.: Atomic gases at negative kinetic temperature. Phys. Rev. Lett. 95, 040403 (2005). cond-mat/0501344v4

    Article  ADS  Google Scholar 

  • Papantonopoulos, E. (ed.): Physics of Black Holes: A Guided Tour. Lect. Notes Phys., vol. 769. Springer, Berlin (2009). doi:10.1007/976-3-54088460-9

    Google Scholar 

  • Parentani, R., Piran, T.: Internal geometry of an evaporating black hole. Phys. Rev. Lett. 73, 2805 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Pathria, R.K.: Statistical Mechanics. Pergamon Press, Elmsford (1972)

    Google Scholar 

  • Reichl, L.E.: A Modern Course in Statistical Physics. Edward Arnold Publisher (LTD), London (1987)

    Google Scholar 

  • Sciama, D.W., Candelas, P., Deutsch, D.: Quantum field theory, horizons and thermodynamics. Adv. Phys. 30, 327 (1981)

    Article  ADS  Google Scholar 

  • Serra, A.L., Romero, M.J.L.D.: Measuring the dark matter equation of state. Mon. Not. R. Astron. Soc. 415, L74–L75 (2011). 1103.5465v2 [gr-qc]

    Article  ADS  Google Scholar 

  • Sokolowski, L.M., Mazur, P.: Second-order phase transitions in black-hole thermodynamics. J. Phys. A, Math. Gen. 13, 1113 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  • Valeri, P., Novikov, I.D.: Physics of Black Holes: Basic Concepts and New Developments. Kluwer Academic Publishers, Norwell (1998)

    Google Scholar 

  • Wald, R.M.: General Relativity. University of Chicago Press, Chicago (1984)

    Book  MATH  Google Scholar 

  • Wald, R.M.: In: black Hole Physics, Erice Lectures 1991. NATO ASI Series. Kluwer Academic Publishers, Dordrecht (1992)

    Google Scholar 

  • Wang, B., Huang, C.-G.: Back reaction on a Reissner-Nordström black hole. Phys. Rev. D 63, 124014 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  • York, J.W. Jr.: Black hole in thermal equilibrium with a scalar field: the backreaction. Phys. Rev. D 31, 775 (1985)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Ghaffarnejad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghaffarnejad, H. Classical and quantum Reissner-Nordström black hole thermodynamics and first order phase transition. Astrophys Space Sci 361, 7 (2016). https://doi.org/10.1007/s10509-015-2605-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-015-2605-z

Keywords

Navigation