Skip to main content
Log in

Relative equilibria of full dynamics of a rigid body with gravitational orbit-attitude coupling in a uniformly rotating second degree and order gravity field

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

The motion of a rigid body in a uniformly rotating second degree and order gravity field is a good model for the gravitationally coupled orbit-attitude motion of a spacecraft in the close proximity of an asteroid. The relative equilibria of this full dynamics model are investigated using geometric mechanics from a global point of view. Two types of relative equilibria are found based on the equilibrium conditions: one is the Lagrangian relative equilibria, at which the circular orbit of the rigid body is in the equatorial plane of the central body; the other is the non-Lagrangian relative equilibria, at which the circular orbit is parallel to but not in the equatorial plane of central body. The existences of the Lagrangian and non-Lagrangian relative equilibria are discussed numerically with respect to the parameters of the gravity field and the rigid body. The effect of the gravitational orbit-attitude coupling is especially assessed. The existence region of the Lagrangian relative equilibria is given on the plane of the system parameters. Numerical results suggest that the negative C20 with a small absolute value and a negative C22 with a large absolute value favor the existence of the non-Lagrangian relative equilibria. The effect of the gravitational orbit-attitude coupling of the rigid body on the existence of the non-Lagrangian relative equilibria can be positive or negative, which depends on the harmonics C20 and C22, and the angular velocity of the rotation of the gravity field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aboelnaga, M.Z., Barkin, Y.V.: Stationary motion of a rigid body in the attraction field of a sphere. Astron. Zh. 56(3), 881–886 (1979)

    ADS  MATH  Google Scholar 

  • Balsas, M.C., Jiménez, E.S., Vera, J.A.: The motion of a gyrostat in a central gravitational field: phase portraits of an integrable case. J. Nonlinear Math. Phys. 15(s3), 53–64 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Balsas, M.C., Jiménez, E.S., Vera, J.A., Vigueras, A.: Qualitative analysis of the phase flow of an integrable approximation of a generalized roto-translatory problem. Cent. Eur. J. Phys. 7(1), 67–78 (2009)

    Article  Google Scholar 

  • Barkin, Y.V.: Poincaré periodic solutions of the third kind in the problem of the translational-rotational motion of a rigid body in the gravitational field of a sphere. Astron. Zh. 56, 632–640 (1979)

    ADS  MATH  Google Scholar 

  • Barkin, Y.V.: Some peculiarities in the moon’s translational-rotational motion caused by the influence of the third and higher harmonics of its force function. Pis’ma Astron. Zh. 6(6), 377–380 (1980)

    ADS  Google Scholar 

  • Barkin, Y.V.: ‘Oblique’ regular motions of a satellite and some small effects in the motions of the Moon and Phobos. Kosm. Issled. 15(1), 26–36 (1985)

    ADS  Google Scholar 

  • Barucci, M.A., Dotto, E., Levasseur-Regourd, A.C.: Space missions to small bodies: asteroids and cometary nuclei. Astron. Astrophys. Rev. 19(1), 48 (2011)

    Article  ADS  Google Scholar 

  • Bellerose, J., Scheeres, D.J.: Energy and stability in the full two body problem. Celest. Mech. Dyn. Astron. 100, 63–91 (2008a)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Bellerose, J., Scheeres, D.J.: General dynamics in the restricted full three body problem. Acta Astronaut. 62, 563–576 (2008b)

    Article  ADS  MATH  Google Scholar 

  • Boué, G., Laskar, J.: Spin axis evolution of two interacting bodies. Icarus 201, 750–767 (2009)

    Article  ADS  Google Scholar 

  • Breiter, S., Melendo, B., Bartczak, P., Wytrzyszczak, I.: Synchronous motion in the Kinoshita problem. Applications to satellites and binary asteroids. Astron. Astrophys. 437(2), 753–764 (2005)

    Article  ADS  Google Scholar 

  • Elipe, A., López-Moratalla, T.: On the Lyapunov stability of stationary points around a central body. J. Guid. Control Dyn. 29(6), 1376–1383 (2006)

    Article  ADS  Google Scholar 

  • Howard, J.E.: Spectral stability of relative equilibria. Celest. Mech. Dyn. Astron. 48, 267–288 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Kinoshita, H.: Stationary motions of an axisymmetric body around a spherical body and their stability. Publ. Astron. Soc. Jpn. 22, 383–403 (1970)

    ADS  Google Scholar 

  • Kinoshita, H.: Stationary motions of a triaxial body and their stability. Publ. Astron. Soc. Jpn. 24, 409–417 (1972a)

    ADS  Google Scholar 

  • Kinoshita, H.: First-order perturbations of the two finite body problem. Publ. Astron. Soc. Jpn. 24, 423–457 (1972b)

    ADS  Google Scholar 

  • Koon, W.-S., Marsden, J.E., Ross, S.D., Lo, M., Scheeres, D.J.: Geometric mechanics and the dynamics of asteroid pairs. Ann. N.Y. Acad. Sci. 1017, 11–38 (2004)

    Article  ADS  Google Scholar 

  • Kumar, K.D.: Attitude dynamics and control of satellites orbiting rotating asteroids. Acta Mech. 198, 99–118 (2008)

    Article  MATH  Google Scholar 

  • Maciejewski, A.J.: Reduction, relative equilibria and potential in the two rigid bodies problem. Celest. Mech. Dyn. Astron. 63, 1–28 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Maciejewski, A.J.: A simple model of the rotational motion of a rigid satellite around an oblate planet. Acta Astron. 47, 387–398 (1997)

    ADS  Google Scholar 

  • McMahon, J.W., Scheeres, D.J.: Dynamic limits on planar libration-orbit coupling around an oblate primary. Celest. Mech. Dyn. Astron. 115, 365–396 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Misra, A.K., Panchenko, Y.: Attitude dynamics of satellites orbiting an asteroid. J. Astronaut. Sci. 54(3&4), 369–381 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  • Mondéjar, F., Vigueras, A.: The Hamiltonian dynamics of the two gyrostats problem. Celest. Mech. Dyn. Astron. 73, 303–312 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Riverin, J.L., Misra, A.K.: Attitude dynamics of satellites orbiting small bodies. In: AIAA/AAS Astrodynamics Specialist Conference and Exhibit, AIAA 2002-4520, Monterey, California, 5–8 August (2002)

    Google Scholar 

  • Scheeres, D.J.: Stability in the full two-body problem. Celest. Mech. Dyn. Astron. 83, 155–169 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Scheeres, D.J.: Stability of relative equilibria in the full two-body problem. Ann. N.Y. Acad. Sci. 1017, 81–94 (2004)

    Article  ADS  Google Scholar 

  • Scheeres, D.J.: Relative equilibria for general gravity fields in the sphere-restricted full 2-body problem. Celest. Mech. Dyn. Astron. 94, 317–349 (2006a)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Scheeres, D.J.: Spacecraft at small NEO. arXiv:physics/0608158v1 (2006b)

  • Scheeres, D.J.: Stability of the planar full 2-body problem. Celest. Mech. Dyn. Astron. 104, 103–128 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Teixidó Román, M.: Hamiltonian Methods in Stability and Bifurcations Problems for Artificial Satellite Dynamics. Master Thesis, Facultat de Matemàtiques i Estadística, Universitat Politècnica de Catalunya, pp. 51–72 (2010)

  • Vereshchagin, M., Maciejewski, A.J., Goździewski, K.: Relative equilibria in the unrestricted problem of a sphere and symmetric rigid body. Mon. Not. R. Astron. Soc. 403, 848–858 (2010)

    Article  ADS  Google Scholar 

  • Wang, Y., Xu, S.: Hamiltonian structures of dynamics of a gyrostat in a gravitational field. Nonlinear Dyn. 70(1), 231–247 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, Y., Xu, S.: Gravity gradient torque of spacecraft orbiting asteroids. Aircr. Eng. Aerosp. Technol. 85(1), 72–81 (2013a)

    Article  MathSciNet  Google Scholar 

  • Wang, Y., Xu, S.: Equilibrium attitude and stability of a spacecraft on a stationary orbit around an asteroid. Acta Astronaut. 84, 99–108 (2013b)

    Article  ADS  Google Scholar 

  • Wang, Y., Xu, S.: Attitude stability of a spacecraft on a stationary orbit around an asteroid subjected to gravity gradient torque. Celest. Mech. Dyn. Astron. 115(4), 333–352 (2013c)

    Article  ADS  MathSciNet  Google Scholar 

  • Wang, Y., Xu, S.: Equilibrium attitude and nonlinear stability of a spacecraft on a stationary orbit around an asteroid. Adv. Space Res. 52(8), 1497–1510 (2013d)

    Article  ADS  Google Scholar 

  • Wang, Y., Xu, S.: Symmetry, reduction and relative equilibria of a rigid body in the J2 problem. Adv. Space Res. 51(7), 1096–1109 (2013e)

    Article  ADS  Google Scholar 

  • Wang, Y., Xu, S.: Stability of the classical type of relative equilibria of a rigid body in the J2 problem. Astrophys. Space Sci. 346(2), 443–461 (2013f)

    Article  ADS  MATH  Google Scholar 

  • Wang, Y., Xu, S.: Gravitational orbit-rotation coupling of a rigid satellite around a spheroid planet. J. Aerosp. Eng. 27(1), 140–150 (2014a)

    Article  MathSciNet  Google Scholar 

  • Wang, Y., Xu, S.: On the nonlinear stability of relative equilibria of the full spacecraft dynamics around an asteroid. Nonlinear Dyn. 78(1), 1–13 (2014b)

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, Y., Xu, S.: Analysis of the attitude dynamics of a spacecraft on a stationary orbit around an asteroid via Poincaré section. Aerosp. Sci. Technol. (2014c, in press). doi:10.1016/j.ast.2014.06.010

  • Wang, L.-S., Krishnaprasad, P.S., Maddocks, J.H.: Hamiltonian dynamics of a rigid body in a central gravitational field. Celest. Mech. Dyn. Astron. 50, 349–386 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Wang, L.-S., Maddocks, J.H., Krishnaprasad, P.S.: Steady rigid-body motions in a central gravitational field. J. Astronaut. Sci. 40, 449–478 (1992)

    ADS  MathSciNet  Google Scholar 

  • Wang, Y., Xu, S., Tang, L.: On the existence of the relative equilibria of a rigid body in the J2 problem. Astrophys. Space Sci. 353(2), 425–440 (2014a)

    Article  ADS  Google Scholar 

  • Wang, Y., Xu, S., Zhu, M.: Stability of relative equilibria of the full spacecraft dynamics around an asteroid with orbit-attitude coupling. Adv. Space Res. 53(7), 1092–1107 (2014b)

    Article  ADS  Google Scholar 

  • Woo, P., Misra, A.K., Keshmiri, M.: On the planar motion in the full two-body problem with inertial symmetry. Celest. Mech. Dyn. Astron. 117(3), 263–277 (2013)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant 11432001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Xu, S. Relative equilibria of full dynamics of a rigid body with gravitational orbit-attitude coupling in a uniformly rotating second degree and order gravity field. Astrophys Space Sci 354, 339–353 (2014). https://doi.org/10.1007/s10509-014-2077-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10509-014-2077-6

Keywords

Navigation