Skip to main content
Log in

Landau damping of longitudinal oscillation in ultra-relativistic plasmas by analytic function of nonextensive distribution

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

The analytic function of relativistic nonextensive distribution is given, and employed to solve the Landau damping of longitudinal oscillation in ultra-relativistic plasmas. The unified expression of Landau damping which reduces to the result in relativistic Maxwellian distributed plasmas in the extensive limit is obtained, and find that Landau damping is relevant to both the number and energy of resonant particles, which described by temperature and nonextensive parameters in relativistic nonextensive distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Download references

Acknowledgements

The author thanks Dr. X.C. Chen for helpful suggestions. This work is supported by the National Natural Science Foundation of China (Grant No. 10974010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Bing Liu.

Appendix

Appendix

Equation (39) is

$$ \Delta ( {\alpha,q} ) \equiv\frac{1}{\varLambda}\int _0^{u_{\max} } { \bigl[ {1 - ( {q - 1} )\alpha\sqrt{1 + u^2} } \bigr]^{\frac{2 - q}{q - 1}}u^2du} . $$
(55)

Let

$$ \Delta' \equiv\int_0^{u_{\max} } { \bigl[ {1 - ( {q - 1} )\alpha\sqrt{1 + u^2} } \bigr]^{\frac{2 - q}{q - 1}}u^2du} , $$
(56)

then

$$\begin{aligned} & \Delta' = l_1 \bigl\{ {l_2 + ( {q - 1} ) \bigl[ {l_3 ( {l_4 + l_5 + l_6 } ) - l_7 ( {l_8 + l_9 } )} \bigr]} \bigr\} ,\quad \frac{1}{2} < q \le1, \end{aligned}$$
(57)
$$\begin{aligned} & \Delta' = l_{10} \bigl\{ {l_{11} + \alpha \bigl[ {l_{12} ( {l_{13} + l_{14} } ) - l_{15} } \bigr]} \bigr\} ,\quad 1 \le q \le1 + 1 / \alpha, \end{aligned}$$
(58)

where

$$\begin{aligned} & l_1 = \frac{1}{16\alpha^2 ( {q - 1} )^2q ( {2q - 3} ) ( {2q - 1} )\Gamma ( {\frac{q - 2}{q - 1}} )}, \end{aligned}$$
(59)
$$\begin{aligned} & l_2 = 2^{2 + \frac{1}{1 - q}}q ( {\alpha- \alpha q} )^{\frac{q}{q - 1}} \bigl( {3 - 8q + 4q^2} \bigr)\Gamma \biggl( { \frac{2q - 1}{2 - 2q}} \biggr) \Gamma \biggl( { \frac{3 - 2q}{2 - 2q}} \biggr){}_2F_1 \biggl[ { \frac{2q - 1}{2 - 2q},\frac{3 - 2q}{2 - 2q};\frac{1}{2};\frac{1}{\alpha ^2 ( {q - 1} )^2}} \biggr], \end{aligned}$$
(60)
$$\begin{aligned} & l_3 = - i\alpha\pi \bigl( { - 6 + 13q - 9q^2 + 2q^3} \bigr)\Gamma \biggl( {\frac{2 - q}{1 - q}} \biggr), \end{aligned}$$
(61)
$$\begin{aligned} & l_4 = 8 \bigl[ {\alpha^2 ( {q - 1} )^2 - 1} \bigr]{}_2F_1 \biggl[ { \frac{3 - 2q}{2 - 2q},\frac{3}{2} + \frac{1}{2 - 2q};1;\alpha^2 ( {q - 1} )^2} \biggr], \end{aligned}$$
(62)
$$\begin{aligned} & l_5 = \bigl[ {8 - 4\alpha^2 \bigl( {q^2 - 1} \bigr)} \bigr]{}_2F_1 \biggl[ { \frac{3 - 2q}{2 - 2q},\frac{3}{2} + \frac{1}{2 - 2q},2,\alpha^2 ( {q - 1} )^2} \biggr], \end{aligned}$$
(63)
$$\begin{aligned} & l_6 = \alpha^2q ( {2q - 1} ){}_2F_1 \biggl[ {\frac{3 - 2q}{2 - 2q},\frac{3}{2} + \frac{1}{2 - 2q};3;\alpha^2 ( {q - 1} )^2} \biggr], \end{aligned}$$
(64)
$$\begin{aligned} & l_7 = 2^{3 + \frac{1}{1 - q}}q ( {\alpha- \alpha q} )^{\frac{1}{q - 1}}\Gamma \biggl( {\frac{3}{2} + \frac{1}{2 - 2q}} \biggr) \Gamma \biggl( {\frac{q}{2 - 2q}} \biggr), \end{aligned}$$
(65)
$$\begin{aligned} & l_8 = \bigl[ {\alpha^2 ( {q - 1} )^2 - 1} \bigr] ( {q - 1} ){}_2F_1 \biggl[ { \frac{3}{2} + \frac{1}{2 - 2q},\frac{q}{2 - 2q}; - \frac{1}{2}; \frac{1}{\alpha^2 ( {q - 1} )^2}} \biggr], \end{aligned}$$
(66)
$$\begin{aligned} & l_9 = \bigl[ {2 ( {q - 2} ) - \alpha^2 ( {q - 1} )^3} \bigr]{}_2F_1 \biggl[ { \frac{3}{2} + \frac{1}{2 - 2q},\frac{q}{2 - 2q};\frac{1}{2}; \frac{1}{\alpha^2 ( {q - 1} )^2}} \biggr], \end{aligned}$$
(67)
$$\begin{aligned} & l_{10} = \frac{ - i}{12\alpha^2\sqrt{\pi}q ( {2q - 1} )\Gamma ( {\frac{q - 2}{q - 1}} )}, \end{aligned}$$
(68)
$$\begin{aligned} & l_{11} = 12\sqrt{\pi}( {2q - 1} )\Gamma \biggl( { \frac{q - 2}{q - 1}} \biggr){}_3F_2 \biggl[ { - \frac{1}{2},1,\frac{3}{2};\frac{2q - 1}{2 ( {q - 1} )},\frac{3q - 2}{2 ( {q - 1} )}; \frac{1}{\alpha^2 ( {q - 1} )^2}} \biggr], \end{aligned}$$
(69)
$$\begin{aligned} & l_{12} = 3\pi^{3 / 2} ( {q - 2} )\Gamma \biggl( {\frac{2 - q}{1 - q}} \biggr), \end{aligned}$$
(70)
$$\begin{aligned} & l_{13} = 2 \bigl[ {\alpha^2 ( {q - 1} )^2 - 1} \bigr]{}_2F_1 \biggl[ { \frac{3 - 2q}{2 - 2q},\frac{3}{2} + \frac{1}{2 - 2q};1;\alpha ^2 ( {q - 1} )^2} \biggr], \end{aligned}$$
(71)
$$\begin{aligned} & l_{14} = \bigl[ {2 - \alpha^2 \bigl( {q^2 - 1} \bigr)} \bigr]{}_2F_1 \biggl[ { \frac{3 - 2q}{2 - 2q},\frac{3}{2} + \frac{1}{2 - 2q};2;\alpha ^2 ( {q - 1} )^2} \biggr], \end{aligned}$$
(72)
$$\begin{aligned} & l_{15} = 2^{2 + \frac{1}{1 - q}}\alpha q ( {2q - 1} )\Gamma \biggl( {\frac{3 - 2q}{2 - 2q}} \biggr)\Gamma \biggl( { \frac{q - 2}{2q - 2}} \biggr){}_3F_2 \biggl[ {1, \frac{q - 2}{2 ( {q - 1} )},\frac{2q - 3}{2q - 2};\frac{1}{2},\frac{5}{2}; \alpha^2 ( {q - 1} )^2} \biggr] . \end{aligned}$$
(73)

Equation (45) is

$$ S ( {\alpha,q} ) \equiv\frac{\alpha^2}{12\varLambda }\int _0^{u_{\max} } { \bigl[ {1 - ( {q - 1} )\alpha\sqrt{1 + u^2} } \bigr]} ^{\frac{1}{q - 1}}u^4du. $$
(74)

Let

$$ \varLambda' \equiv\int_0^{u_{\max} } { \bigl[ {1 - ( {q - 1} )\alpha\sqrt{1 + u^2} } \bigr]} ^{\frac{1}{q - 1}}u^4du, $$
(75)

then

$$\begin{aligned} & \varLambda'=J_1 \left \{ { \begin{array}{l} J_2 [ {2^{\frac{q}{q - 1}} ( {J_3 + J_4 } )J_5 - ( {J_6 - J_7 } )J_8 } ] \\ \quad{} + \alpha [ {J_9 - J_{10} ( {J_{11} ( {J_{12} - J_{13} } ) - J_{14} } )} ] \\ \end{array} } \right \},\quad\frac{4}{5} < q \le1; \end{aligned}$$
(76)
$$\begin{aligned} & \varLambda' = J_{15} \bigl\{ {J_{16} - 5\pi \bigl[ {J_{17} \bigl( { ( {q - 1} )J_{18} - J_{19} } \bigr) - J_{20} } \bigr]} \bigr\} ,\quad 1 \le q \le 1 + 1 / \alpha, \end{aligned}$$
(77)

where

$$\begin{aligned} & J_1 = - \frac{2^{\frac{1 + 6q}{1 - q}}}{\alpha^3 ( {q - 2} ) ( {q - 1} )^2 ( {3q - 2} ) ( {5q - 4} )\Gamma ( {\frac{1}{1 - q}} )}, \end{aligned}$$
(78)
$$\begin{aligned} & J_2 = - 3i2^{\frac{1 + q}{q - 1}}\sqrt{\pi}\Gamma \biggl[ { \frac {3 - 4q}{2 ( {q - 1} )}} \biggr]\Gamma \biggl[ {\frac{q - 2}{2 ( {q - 1} )}} \biggr], \end{aligned}$$
(79)
$$\begin{aligned} & J_3 = 2^{\frac{3q}{q - 1}} - 2^{\frac{1 + 2q}{q - 1}}q + 2^{\frac{2}{q - 1}}\alpha^2 \bigl( { - 9\times2^{\frac{q}{q - 1}} + 49 \times2^{\frac{1}{q - 1}}q - 21\times2^{\frac{q}{q - 1}}q^2 + 11 \times2^{\frac{1}{q - 1}}q^3} \bigr), \end{aligned}$$
(80)
$$\begin{aligned} & J_4 = \alpha^4\left ( { \begin{array}{l} 5\times2^{\frac{2 + q}{q - 1}} - 49\times2^{\frac{3}{q - 1}}q + 47\times 2^{\frac{2 + q}{q - 1}}q^2 \\ \quad{}- 11\times2^{\frac{3q}{q - 1}}q^3 + 5\times2^{\frac{3q}{q - 1}}q^4 - 7\times2^{\frac{3}{q - 1}}q^5 \end{array} } \right ), \end{aligned}$$
(81)
$$\begin{aligned} & J_5 = {}_2F_1 \biggl[ {1 + \frac{1}{2 - 2q},\frac{q - 2}{2 ( {q - 1} )};1;\alpha^2 ( {q - 1} )^2} \biggr], \end{aligned}$$
(82)
$$\begin{aligned} & J_6 = 2^{\frac{4q}{q - 1}} - 2^{\frac{1 + 3q}{q - 1}}q + \alpha^2 \bigl( { - 3\times2^{\frac{1 + 3q}{q - 1}} + 39\times2^{\frac{3 + q}{q - 1}}q - 73\times2^{\frac{4}{q - 1}}q^2 + 5\times2^{\frac{2 + 2q}{q - 1}}q^3} \bigr), \end{aligned}$$
(83)
$$\begin{aligned} & J_7 = 3\times2^{\frac{3}{q - 1}}\alpha^4 \left ( { \begin{array}{l} - 2^{\frac{q}{q - 1}} + 15\times2^{\frac{1}{q - 1}}q - 39\times 2^{\frac{1}{q - 1}}q^2 \\ \quad{}+23\times2^{\frac{q}{q - 1}}q^3 - 25\times2^{\frac{1}{q - 1}}q^4 + 5\times 2^{\frac{1}{q - 1}}q^5 \\ \end{array} } \right ), \end{aligned}$$
(84)
$$\begin{aligned} & J_8 = {}_2F_1 \biggl[ {1 + \frac{1}{2 - 2q},\frac{q - 2}{2 ( {q - 1} )};2;\alpha^2 ( {q - 1} )^2} \biggr], \end{aligned}$$
(85)
$$\begin{aligned} & \begin{aligned}[b] J_9 & = i2^{\frac{4}{q - 1}} \alpha^3\sqrt{\pi} \left ( \begin{array}{l} - 2^{4 + \frac{2}{q - 1}} + 21\times2^{\frac{2q}{q - 1}}q - 43\times 2^{\frac{2q}{q - 1}}q^2 \\ \quad{} +171\times2^{\frac{2}{q - 1}}q^3 - 41\times2^{\frac{1 + q}{q - 1}}q^4 + 15\times2^{\frac{2}{q - 1}}q^5 \\ \end{array} \right ) \\ &\quad \times\Gamma \biggl( {\frac{1}{2 - 2q}} \biggr)\Gamma \biggl[ { \frac{q - 2}{2 ( {q - 1} )}} \biggr]{}_2F_1 \biggl[ {1 + \frac{1}{2 - 2q},\frac{q - 2}{2 ( {q - 1} )};4;\alpha^2 ( {q - 1} )^2} \biggr], \end{aligned} \end{aligned}$$
(86)
$$\begin{aligned} & J_{10} = 3\times2^{\frac{2q}{q - 1}} ( {\alpha- \alpha q} )^{\frac{q}{q - 1}}, \end{aligned}$$
(87)
$$\begin{aligned} & J_{11} = 2^{\frac{q}{q - 1}}\Gamma \biggl( { \frac{3 - 2q}{2 - 2q}} \biggr)\Gamma \biggl( {\frac{q}{2 - 2q} - \frac{3}{2}} \biggr), \end{aligned}$$
(88)
$$\begin{aligned} & \begin{aligned}[b] J_{12} &= - 2^{\frac{2 + q}{q - 1}} + 7 \times2^{\frac{3}{q - 1}}q - 2^{\frac{3q}{q - 1}}q^2 + 3\times2^{\frac{3}{q - 1}}q^3 + \alpha^2\left ( { \begin{array}{l} 2^{\frac{2 + q}{q - 1}} - 11\times2^{\frac{3}{q - 1}}q + 3\times 2^{\frac{3q}{q - 1}}q^2 \\ \quad{} -13\times2^{\frac{2 + q}{q - 1}}q^3 + 7\times2^{\frac{2 + q}{q - 1}}q^4 - 3\times2^{\frac{3}{q - 1}}q^5 \\ \end{array} } \right ) \\ &\quad \times{}_2F_1 \biggl[ {1 + \frac{1}{2 - 2q}, - \frac{3}{2} + \frac {q}{2 - 2q}; - \frac{1}{2};\frac{1}{\alpha^2 ( {q - 1} )^2}} \biggr] , \end{aligned} \end{aligned}$$
(89)
$$\begin{aligned} & \begin{aligned}[b] J_{13} &= - 2^{\frac{1 + q}{q - 1}}q \bigl( {2^{\frac{q}{q - 1}} - 5\times2^{\frac{1}{q - 1}} + 3\times2^{\frac{1}{q - 1}}q^2} \bigr) + \alpha^2\left ( \begin{array}{l} 2^{\frac{2 + q}{q - 1}} - 11\times2^{\frac{3}{q - 1}}q + 3\times 2^{\frac{3q}{q - 1}}q^2 \\ \quad{} -13\times2^{\frac{2 + q}{q - 1}}q^3 + 7\times2^{\frac{2 + q}{q - 1}}q^4 - 3\times2^{\frac{3}{q - 1}}q^5 \\ \end{array} \right ) \\ &\quad \times{}_2F_1 \biggl[ {1 + \frac{1}{2 - 2q}, - \frac{3}{2} + \frac {q}{2 - 2q};\frac{1}{2};\frac{1}{\alpha^2 ( {q - 1} )^2}} \biggr] , \end{aligned} \end{aligned}$$
(90)
$$\begin{aligned} & \begin{aligned}[b] J_{14} &= \alpha \bigl( {2^{\frac{4q}{q - 1}} - 17\times2^{\frac{2 + 2q}{q - 1}}q + 13\times2^{\frac{1 + 3q}{q - 1}}q^2 - 67\times2^{\frac{4}{q - 1}}q^3 + 15\times2^{\frac{4}{q - 1}}q^4} \bigr) \\ &\quad \times\Gamma \biggl[ {\frac{q - 2}{2 ( {q - 1} )}} \biggr]\Gamma \biggl[ { \frac{q}{2 - 2q} - 2} \biggr]{}_2F_1 \biggl[ { \frac{q - 2}{2 ( {q - 1} )},\frac{q}{2 - 2q} - 2;\frac{1}{2};\frac{1}{\alpha^2 ( {q - 1} )^2}} \biggr], \end{aligned} \end{aligned}$$
(91)
$$\begin{aligned} & J_{15} = \frac{i2^{\frac{1 - 7q}{q - 1}}}{5\alpha^3\sqrt{\pi}( {q - 1} )^3 ( {3q - 2} ) ( {5q - 4} )\Gamma ( {\frac{1}{1 - q}} )}, \end{aligned}$$
(92)
$$\begin{aligned} & \begin{aligned}[b] J_{16} &= - 2^{6 + \frac{5}{q - 1}} \alpha^3 ( {q - 1} )^3 \bigl( {8 - 22q + 15q^2} \bigr)\Gamma \biggl[ {\frac{q - 2}{2 ( {q - 1} )}} \biggr]\Gamma \biggl( {\frac{1}{2 - 2q}} \biggr) \\ &\quad \times{}_3F_2 \biggl[ {1,\frac{1}{2 - 2q}, \frac{1}{1 - q} + \frac{q}{2 ( {q - 1} )};\frac{1}{2},\frac{7}{2}; \alpha^2 ( {q - 1} )^2} \biggr], \end{aligned} \end{aligned}$$
(93)
$$\begin{aligned} & J_{17} = 3\Gamma \biggl[ {\frac{3 - 4q}{2 ( {q - 1} )}} \biggr] \Gamma \biggl[ {\frac{q - 2}{2 ( {q - 1} )}} \biggr], \end{aligned}$$
(94)
$$\begin{aligned} & J_{18} =\left [ \begin{array}{l} 2^{\frac{5q}{q - 1}} + \alpha^2 ( { - 9\times2^{3 + \frac{5}{q - 1}} + 5\times2^{\frac{5q}{q - 1}}q - 11\times2^{3 + \frac{5}{q - 1}}q^2} ) \\ \quad{} +\alpha^4\left ( { \begin{array}{l} 5\times2^{3 + \frac{5}{q - 1}} - 11\times2^{4 + \frac{5}{q - 1}}q + 9\times2^{\frac{5q}{q - 1}}q^2 \\ \quad{} - 13\times2^{4 + \frac{5}{q - 1}}q^3 + 7\times2^{3 + \frac{5}{q - 1}}q^4 \end{array} } \right ) \end{array} \right ] {}_2F_1 \biggl[ {1 + \frac{1}{2 - 2q},\frac{q - 2}{2 ( {q - 1} )};1;\alpha^2 ( {q - 1} )^2} \biggr] , \end{aligned}$$
(95)
$$\begin{aligned} & J_{19} =\left [ \begin{array}{l} 2^{\frac{5q}{q - 1}} ( {q - 1} ) - 2^{2 + \frac{5}{q - 1}}\alpha ^2 ( { - 12 + 45q - 53q^2 + 20q^3} ) \\ \quad{} +3\alpha^4\left ( \begin{array}{l} - 2^{2 + \frac{5}{q - 1}} + 2^{\frac{5q}{q - 1}}q - 23\times2^{2 + \frac{5}{q - 1}}q^2 \\ \quad{} +31\times2^{2 + \frac{5}{q - 1}}q^3 - 5\times2^{4 + \frac{5}{q - 1}}q^4 + 5\times2^{2 + \frac{5}{q - 1}}q^5 \end{array} \right ) \end{array} \right ] \\ &\hphantom{J_{19} =} \times {}_2F_1 \biggl[ {1 + \frac{1}{2 - 2q},\frac{q - 2}{2 ( {q - 1} )};2;\alpha^2 ( {q - 1} )^2} \biggr], \end{aligned}$$
(96)
$$\begin{aligned} & J_{20} = \frac{2^{\frac{5q}{q - 1}}\alpha ( {8 - 22q + 15q^2} )\Gamma ( {\frac{1}{1 - q}} )\Gamma ( {\frac {1}{q - 1}} )}{\Gamma [ {2 + \frac{1}{2 ( {q - 1} )}} ]\Gamma [ {1 + \frac{q}{2 ( {q - 1} )}} ]} {}_3F_2 \biggl[ { - \frac{3}{2},1,\frac{3}{2};2 + \frac{1}{2 ( {q - 1} )},1 + \frac{q}{2 ( {q - 1} )};\frac{1}{\alpha^2 ( {q - 1} )^2}} \biggr] . \end{aligned}$$
(97)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, HB., Song, HY., Liu, SB. et al. Landau damping of longitudinal oscillation in ultra-relativistic plasmas by analytic function of nonextensive distribution. Astrophys Space Sci 352, 547–557 (2014). https://doi.org/10.1007/s10509-014-1917-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10509-014-1917-8

Keywords

Navigation