Skip to main content
Log in

A Neuro-Fuzzy modeling for prediction of solar cycles 24 and 25

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

The paper presents a Neuro-Fuzzy model to predict the features of the forthcoming sunspot cycles 24 and 25. The sunspot time series were analyzed with the proposed model. It is optimized based on Backpropagation scheme and applied to the yearly smoothed sunspot numbers. The appropriate number of network inputs for the sunspots data series is obtained based on sequential forward search for the Neuro-Fuzzy model. According to the model prediction the maximum amplitudes of the cycles 24 and 25 will occur in the year 2013 and year 2022 with peaks of 101±8 and 90.7±8, respectively. The correlation and error analysis are discussed to ensure the performance of the proposed Neuro-Fuzzy approach as a predictor for sunspot time series. The correlation coefficient between Neuro-Fuzzy model forecasted sunspot number values with the actual ones is 0.96.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ajabshirizadeh, A., Jouzdani, N.M., Abbassi, S.: Res. Astron. Astrophys. 11, 491 (2011)

    Article  ADS  Google Scholar 

  • Attia, A.-F., Abdel-Hamid, R., Quassim, M.: Sol. Phys. 227, 177 (2005)

    Article  ADS  Google Scholar 

  • Bhatt, N.J., Jain, R., Aggarwal, M.: Sol. Phys. 260, 225 (2009)

    Article  ADS  Google Scholar 

  • Calvo, R.A., Ceccatto, H.A., Piacentini, R.D.: Astrophys. J. 444 (1995)

  • Chumak, O.V., Matveychuk, T.V.: Res. Astron. Astrophys. 10, 935 (2010)

    Article  ADS  Google Scholar 

  • Dabas, R.S., Sharma, K.: Sol. Phys. 266, 391 (2010)

    Article  ADS  Google Scholar 

  • Dabas, R.S., Sharma, K., Das, R.M., Pillai, K.G.M., Chopra, P., Sethi, N.K.: Sol. Phys. 250, 171 (2008)

    Article  ADS  Google Scholar 

  • Du, Z.L.: Astrophys. Space Sci. 338, 9 (2012)

    Article  ADS  Google Scholar 

  • Du, Z.L., Wang, H.N.: Predicting the solar maximum with the rising rate. Sci. China, Phys. Mech. Astron. 55(2), 365–370 (2012)

    Article  ADS  Google Scholar 

  • Hathaway, D.H., Wilson, R., Reichman, E.J.: J. Geophys. Res. 104, 375 (1999)

    Article  Google Scholar 

  • Hill, T., Lewicki, P.: STATISTICS: Methods and Applications. StatSoft, Tulsa (2007)

    Google Scholar 

  • Hiremath, K.M.: Astrophys. Space Sci. 314, 45 (2008)

    Article  ADS  Google Scholar 

  • Horáček, P.: In: Adelsberger, H., Lazanasky, J., Marik, V. (eds.) Information Management in Computer Integrated Manufacturing. Lec. Notes Comp. Sci., vol. 973, p. 257. Springer, Berlin (1995)

    Chapter  Google Scholar 

  • Jang, S.R., Sun, C.T., Mizutani, E.: Neuro-Fuzzy and Soft Computing, a Computational Approach to Learning and Machine Intelligence. Prentice Hall, New York (1997)

    Google Scholar 

  • Javaraiah, J.: Sol. Phys. 252, 419 (2008)

    Article  ADS  Google Scholar 

  • Kakad, B.: Sol. Phys. 270, 393 (2011)

    Article  ADS  Google Scholar 

  • Kane, R.P.: Ann. Geophys. 28, 1463 (2010)

    Article  ADS  Google Scholar 

  • Kane, R.P.: Indian J. Radio Space Phys. 40, 72–75 (2011)

    ADS  Google Scholar 

  • Kilcik, A., Anderson, C.N.K., Rozelot, J.P., Ye, H., Sugihara, G., Ozguc, A.: Astrophys. J. 693, 1173 (2009)

    Article  ADS  Google Scholar 

  • Komitov, B., Duchlev, P., Stoychev, K., Dechev, M., Koleva, K.: Bulg. Astron. J. 16, 44–49 (2011)

    Google Scholar 

  • Lin, C.T., Lee, C.S.G.: IEEE Trans. Comput. 40 (1991)

  • Passos, D.: Astrophys. J. 744 (2012)

  • Petrovay, K.: (2012). arXiv:1012.5513 [astro-ph]

  • Pishkalo, M.I.: Sun Geosph. 5(2), 47–51 (2010)

    ADS  Google Scholar 

  • Quassim, M.S., Attia, A.-F., Elminir, H.K.: Sol. Phys. 243, 253 (2007)

    Article  ADS  Google Scholar 

  • Rigozo, N.R., Souza Echer, M.P., Evangelista, H., Nordemann, D.J.R., Echer, E.: J. Atmos. Sol.-Terr. Phys. 73, 1294 (2011)

    Article  ADS  Google Scholar 

  • Uwamahoro, J., McKinnell, L.-A., Cilliers, P.J.: J. Atmos. Sol.-Terr. Phys. 71, 569 (2009)

    Article  ADS  Google Scholar 

  • Vitinsky, Y.I.: Solar activity forecasting NASA TTF-289, 129 (1965)

  • Wang, L.-X., Mendel, J.: Generating fuzzy rules by learning from examples. IEEE Trans. Syst. Man, Cybern. 22(6), 1414 (1992)

    Article  MathSciNet  Google Scholar 

  • Yoshida, A., Yamagishi, H.: Ann. Geophys. 28, 417 (2010)

    Article  ADS  Google Scholar 

  • Zimbardo, G., Greco, A., Veltri, P., Voros, Z., Amata, E., Taktakishvili, A.L., Carbone, V., Sorriso-Valvo, L., Guerra, I.: Earth Moon Planets 104(1–4), 127–129 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank anonymous referee for his careful analysis of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdel-Fattah Attia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Attia, AF., Ismail, H.A. & Basurah, H.M. A Neuro-Fuzzy modeling for prediction of solar cycles 24 and 25. Astrophys Space Sci 344, 5–11 (2013). https://doi.org/10.1007/s10509-012-1300-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10509-012-1300-6

Keywords

Navigation