Skip to main content

Advertisement

Log in

Effects of seawater acidification on early development of the sea urchin Hemicentrotus pulcherrimus

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

To explore the impact of CO2-induced seawater acidification on benthic echinoderms, Hemicentrotus pulcherrimus inhabiting intertidal coastal zone in north China was utilized to evaluate the effects of seawater acidification on fertilization, embryogenesis and early larval development. Based on the projection of IPCC, present natural seawater condition (pH = 8.06 ± 0.01) and three laboratory-controlled acidified conditions (OA1, ΔpH = −0.3 units; OA2, ΔpH = −0.4 units; OA3, ΔpH = −0.5 units) were set up. Results showed that: (1) seawater acidification had no effect on fertilization; (2) early embryonic cleavage tended to be delayed and the proportion of aberrant cleavage increased in a dose-dependent manner with decreased pH; (3) the hatching rate of blastulae and larvae survival rate were both decreased with pH decline; and (4) larval abnormalities including impaired symmetry, elongated skeletal elements and corroded spicules were observed in all OA treatments as compared to control. All data observed in this study support the concern that the response of echinoderms to seawater acidification varies among species, and further research is required to clarify the specific cellular mechanisms involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

IPCC:

Intergovernmental panel on climate change

CO2 :

Carbon dioxide

OA:

Ocean acidification

DO:

Dissolved oxygen

FSW:

Filter seawater

ANOVA:

Analysis of variance

KCl:

Potassium chloride

References

  • Brennand HS, Soars N, Dworjanyn SA, Davis AR, Byrne M (2010) Impact of ocean warming and ocean acidification on larval development and calcification in the sea urchin Tripneustes gratilla. PLoS ONE 5(6):e11372. doi:10.1371/journal.pone.0011372

    Article  Google Scholar 

  • Byrne M, Przeslawski R (2013) Multistressor impacts of warming and acidification of the ocean on marine invertebrates’ life histories. Integr Comp Biol 53(4):582–596. doi:10.1093/icb/ict049

    Article  CAS  PubMed  Google Scholar 

  • Byrne M, Gonzalez-Bernat M, Doo S, Foo S, Soars N, Lamare M (2013a) Effects of ocean warming and acidification on embryos and non-calcifying larvae of the invasive sea star Patiriella regularis. Mar Ecol Prog Ser 473:235–246. doi:10.3354/meps10058

    Article  CAS  Google Scholar 

  • Byrne M, Lamare M, Winter D, Dworjanyn SA, Uthicke S (2013b) The stunting effect of a high CO2 ocean on calcification and development in sea urchin larvae, a synthesis from the tropics to the poles. Philos Trans R Soc Lond B Biol Sci 368(1627):20120439. doi:10.1098/rstb.2012.0439

    Article  PubMed  PubMed Central  Google Scholar 

  • Calosi P, Rastrick SP, Graziano M, Thomas SC, Baggini C, Carter HA, Hall-Spencer JM, Milazzo M, Spicer JI (2013) Distribution of sea urchins living near shallow water CO2 vents is dependent upon species acid–base and ion-regulatory abilities. Mar Pollut Bull 73(2):470–484. doi:10.1016/j.marpolbul.2012.11.040

    Article  CAS  PubMed  Google Scholar 

  • Chan KY, García E, Dupont S (2015) Acidification reduced growth rate but not swimming speed of larval sea urchins. Sci Rep 5:9764. doi:10.1038/srep09764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang YQ, Ding J, Song J, Yang W (2004) The research of biology and aquaculture in cucumber and sea urchins. China Ocean Press, Beijing

    Google Scholar 

  • Chang YQ, Zhang WJ, Zhao C, Song J (2012) Estimates of heritabilities and genetic correlations for growth and gonad traits in the sea urchin Strongylocentrotus intermedius. Aquac Res 43(2):271–280. doi:10.1111/j.1365-2109.2011.02825.x

    Article  Google Scholar 

  • Comeau S, Jeffree R, Teyssié JL, Gattuso JP (2015) Response of the arctic pteropod limacina helicina to projected future environmental conditions. PLoS ONE 5(6):1–7. doi:10.1371/journal.pone.0011362

    Google Scholar 

  • Cooley SR, Donry SC (2009) Anticipating ocean acidification’s economic consequences for commercial fisheries. Environ Res Lett 4(2):024007. doi:10.1088/1748-9326/4/2/024007

    Article  Google Scholar 

  • Doney S (2009) The consequences of human-driven ocean acidification for marine life. Biol Rep 1:36. doi:10.3410/B1-36

    Google Scholar 

  • Dupont S, Pörtner H (2013) Marine science: get ready for ocean acidification. Nature 498(7455):429. doi:10.1038/498429a

    Article  CAS  PubMed  Google Scholar 

  • Dupont S, Thorndyke MS (2013) Direct impacts of near-future ocean acidification on sea urchins. In: Fernández-Palacios JM, de Nascimento L, Hernández JC, Clemente S, González A, Díaz-González JP (eds) Climate change perspective from the Atlantic: past, present and future. Servicio de Publicaciones, Universidad de La Laguna, Spain, pp 461–485

    Google Scholar 

  • Dupont S, Ortega-Martínez O, Thorndyke M (2010) Impact of near-future ocean acidification on echinoderms. Ecotoxicology 19(3):449–462. doi:10.1007/s10646-010-0463-6

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Bernat MJ, Lamare M, Barker M (2013a) Effects of reduced seawater pH on fertilization, embryogenesis and larval development in the Antarctic seastar Odontaster validus. Polar Bio 36(2):235–247. doi:10.1007/s00300-012-1255-7

    Article  Google Scholar 

  • Gonzalez-Bernat MJ, Lamare M, Uthicke S, Btrne M (2013b) Fertilization, embryogenesis and larval development in the tropical intertidal sand dollar Arachnoides placenta in response to reduced seawater pH. Mar Bio 160(8):1927–1941. doi:10.1007/s00227-012-2034-2

    Article  CAS  Google Scholar 

  • Grosberg RK, Levitan DR (1992) For adults only? Supply-side ecology and the history of larval biology. Trends Ecol Evol 7(4):130–133. doi:10.1016/0169-5347(92)90148-5

    Article  CAS  PubMed  Google Scholar 

  • Hammond LM, Hofmann GE (2012) Early developmental gene regulation in Strongylocentrotus purpuratus embryos in response to elevated CO2 seawater conditions. J Exp Biol 215(14):2445–2454. doi:10.1242/jeb.058008

    Article  CAS  PubMed  Google Scholar 

  • Hardy NA, Byrne M (2014) Early development of congeneric sea urchins (Heliocidaris) with contrasting life history modes in a warming and high CO2 ocean. Mar Environ Res 102:78–87. doi:10.1016/j.marenvres.2014.07.007

    Article  CAS  PubMed  Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Naueles A, Xia Y, Bex V, Midgley BM (eds) Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, New York

    Google Scholar 

  • Kurihara H, Shirayama Y (2004) Effects of increased atmospheric CO2 on sea urchin early development. Mar Ecol Prog Ser 274:161–169. doi:10.3354/meps274161

    Article  Google Scholar 

  • Lawrence JM (ed) (2013) Sea urchins: biology and ecology. Elsevier B.V, Amsterdam

    Google Scholar 

  • Liu X, Chang Y, Xiang J, Cao X (2005) Estimates of genetic parameters for growth traits of the sea urchin, Strongylocentrotus intermedius. Aquaculture 243(1):27–32. doi:10.1016/j.aquaculture.2004.10.014

    Article  CAS  Google Scholar 

  • Mann K, Wilt FH, Poustka AJ (2010) Research Proteomic analysis of sea urchin (Strongylocentrotus purpuratus) spicule matrix. Proteome Sci 8:33. doi:10.1186/1477-5956-8-33

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin S, Richier S, Pedrotti ML, Dupont S, Castejon C, Gerakis Y, Kerros ME, Oberhänsli F, Teyssié JL, Jeffree R, Gattuso JP (2011) Early development and molecular plasticity in the Mediterranean sea urchin Paracentrotus lividus exposed to CO2-driven acidification. J Exp Biol 214(8):1357–1368. doi:10.1242/jeb.051169

    Article  CAS  PubMed  Google Scholar 

  • Morgan AJ (2011) Sea urchin eggs in the acid reign. Cell Calcium 50(2):147–156. doi:10.1016/j.ceca.2010.12.007

    Article  CAS  PubMed  Google Scholar 

  • Moulin L, Catarino AI, Claessens T (2011) Effects of seawater acidification on early development of the intertidal sea urchin Paracentrotus lividus (Lamarck 1816). Mar Pollut Bull 62(1):48–54. doi:10.1016/j.marpolbul.2010.09.012

    Article  CAS  PubMed  Google Scholar 

  • Pearse JS (2006) Ecological role of purple sea urchins. Science 314(5801):940–941

    Article  CAS  PubMed  Google Scholar 

  • Stumpp M, Hua MY, Melznerb F, Gutowskaa MA, Doreyc N, Himmerkusa N, Holtmanna WC, Dupont ST, Thorndykec MC, Bleicha M (2012) Acidified seawater impacts sea urchin larvae pH regulatory systems relevant for calcification. Proc Natl Acad Sci USA 109(44):18192–18197. doi:10.1073/pnas.1209174109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Todgham AE, Hofmann GE (2009) Transcriptomic response of sea urchin larvae Strongylocentrotus purpuratus to CO2-driven seawater acidification. J Exp Biol 212(16):2579–2594. doi:10.1242/jeb.032540

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are very grateful to the reviewers gives us helpful comments. This work was supported by the National Natural Science Foundation of China (NSFC No. 41206128), the Program for Liaoning Excellent Talents in University (LNET No. LJQ2013079) and the National High-tech R&D Program (863 Program, No. 2012AA10A412).

Author contribution

Y.Y. Z. and Y.Q. C. conceived and designed the experiments. The experiments were performed by W.B. H., M.B. L., L.Z. D. and W.J. Z. Data were analyzed by Y.Y. Z., Y.Q. C. and C. L. The paper was written by Y.Y. Z. and W.B. H. All authors read and approved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yaqing Chang or Cong Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 76 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, Y., Hu, W., Duan, L. et al. Effects of seawater acidification on early development of the sea urchin Hemicentrotus pulcherrimus . Aquacult Int 25, 655–678 (2017). https://doi.org/10.1007/s10499-016-0064-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-016-0064-3

Keywords

Navigation