Skip to main content

Advertisement

Log in

Evaluation of optimal conditions for cultivation of marine Chlorella sp. as potential sources of lipids, exopolymeric substances and pigments

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

Marine microalgae are used in aquaculture as a suspension to feed young fishes and shrimps. Marine Chlorella sp. is one of the most attractive marine microalgae because in addition to pigments it can accumulate lipids at a high content (>30 %) and release exopolymeric substances (EPSs) into the culture medium. This study aimed to evaluate the optimal cultivation of marine Chlorella sp. as potential sources of lipids, EPSs and pigments. Among the culturing regimes tested, mixotrophic cultivation mode produced the highest yields of biomass, lipids and EPSs. Several factors affecting mixotrophic cultivation were optimized. An increase in light intensity up to 65 μmol m−2 s−1 and carbon dioxide up to 10 % v/v in air enhanced both biomass and product formation. An increase in glucose concentration up to 1 % w/v enhanced biomass and EPS yields but decreased lipid and chlorophyll contents. A semi-continuous cultivation under optimal conditions produced microalgal biomass of 2.76 g L−1 with a high lipid content of 44.9 % and EPS of 1.46 g L−1. This study has also shown that the microalgal lipid and EPS have potential to be used as biodiesel feedstocks and bioflocculants, respectively. The concomitant production of these valuable products together with the microalgal biomass would be a potential way to offset the production cost and contribute greatly to developing industrialized microalgae cultivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Becker EW (1994) Microalgae: biotechnology and microbiology. Cambridge University Press, New York

    Google Scholar 

  • Bermúdez J, Rosales N, Loreto C, Briceño B, Morales E (2004) Exopolysaccharide, pigment and protein production by the marine microalga Chroomonas sp. in semicontinuous cultures. World J Microbiol Biotechnol 20:179–183

    Article  Google Scholar 

  • Buckwalter P, Embaye T, Gormly S, Trent JD (2013) Dewatering microalgae by forward osmosis. Desalination 312:19–22

    Article  CAS  Google Scholar 

  • Cheirsilp B, Torpee S (2012) Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation. Bioresour Technol 110:510–516

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Li P, Liu Z, Jiao Q (2009) The released polysaccharide of the cyanobacterium Aphanothece halophytica inhibits flocculation of the microalga with ferric chloride. J Appl Phycol 21:327–331

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  PubMed  CAS  Google Scholar 

  • Chiu SY, Kao CY, Chen CH, Kuan TC, Ong SC, Lin CS (2008) Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photoreactor. Bioresour Technol 99:3389–3396

    Article  PubMed  CAS  Google Scholar 

  • Danesi EDG, Rangel-Yagui CO, Sato S, de Carvalho JCM (2011) Growth and content of Spirulina platensis biomass chlorophyll cultivated at different values of light intensity and temperature using different nitrogen sources. Brazil J Microbiol 42(1):362–373

    Article  CAS  Google Scholar 

  • Dayananda C, Sarada R, Rani MU, Shamala TR, Ravishankar GA (2007) Autotrophic cultivation of Botryococcus braunii for the production of hydrocarbons and exopolysaccharides in various media. Biomass Bioenergy 31:87–93

    Article  CAS  Google Scholar 

  • de Oliveira MACL, Monteiro MPC, Robbs PG, Leite SGF (1999) Growth and chemical composition of Spirulina maxima and Spirulina platensis biomass at different temperatures. Aquacult Int 7(4):261–275

    Article  Google Scholar 

  • Duan J, Gregory J (2003) Coagulation by hydrolysing metal salts. Adv Colloid Interface Sci 100–102:475–502

    Article  Google Scholar 

  • Fagiri YMA, Salleh A, El-Nagerabi SAF (2013) Influence of chemical and environmental factors on the growth performance of Spirulina platensis strain SZ100. J Algal Biomass Utilization 4(2):7–15

    Google Scholar 

  • Ferruzzi MG, Blakeslee J (2007) Digestion, absorption, and cancer preventative activity of dietary chlorophyll derivatives. Nutr Res 27(1):1–12

    Article  CAS  Google Scholar 

  • Folch J, Lees M, Stanley GHS (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  • Frumento D, Casazza AA, Al Arni S, Converti A (2013) Cultivation of Chlorella vulgaris in tubular photobioreactors: a lipid source for biodiesel production. Biochem Eng J 81:120–125

    Article  CAS  Google Scholar 

  • Girard JM, Roy ML, Hafsa MB, Gagnon J, Faucheux N, Heitz M, Tremblay R, Deschênes JS (2014) Mixotrophic cultivation of green microalgae Scenedesmus obliquus on cheese whey permeate for biodiesel production. Algal Res 5:241–248

    Article  Google Scholar 

  • Goo BG, Baek G, Choi DJ, Park YI, Synytsya A, Bleha R, Seong DH, Lee CG, Park JK (2013) Characterization of a renewable extracellular polysaccharide from defatted microalgae Dunaliella tertiolecta. Bioresour Technol 129:343–350

    Article  PubMed  CAS  Google Scholar 

  • Gopinath A, Puhan S, Nagarajan G (2009) Theoretical modeling of iodine value and saponification value of biodiesel fuels from their fatty acid composition. Renew Energy 34:1806–1811

    Article  CAS  Google Scholar 

  • Gudin C, Therpenier C (1986) Bioconversion of solar energy into organic chemicals by microalgae. Adv Biotechnol Process 6:73–110

    CAS  Google Scholar 

  • Haass D, Tanner W (1974) Regulation of hexose transport in Chlorella vulgaris. Plant Physiol 53:291–302

    Article  Google Scholar 

  • Heredia-Arroyo T, Wei W, Hu B (2010) Oil accumulation via heterotrophic/mixotrophic Chlorella protothecoides. Appl Biochem Biotechnol 162:1978–1995

    Article  PubMed  CAS  Google Scholar 

  • Hossain ABM, Salleh A, Boyce AN, Chowdhurry P, Naqiuddin M (2008) Biodiesel fuel production from algae as renewable energy. Am J Biochem Biotechnol 4:250–254

    Article  CAS  Google Scholar 

  • Jham GN, Teles FFF, Campos LG (1982) Use of aqueous HCl/MeOH as esterification reagent for analysis of fatty acids derived from soybean lipids. J Am Oil Chem Soc 59:132–133

    Article  CAS  Google Scholar 

  • Krisnangkura K (1986) A simple method for estimation of Cetane index of vegetable oil methyl esters. J Am Oil Chem Soc 63:552–553

    Article  CAS  Google Scholar 

  • Lee YK (2004) Algal nutrition. Heterotrophic carbon nutrition. In: Richmond A (ed) Handbook of microalgal culture. Biotechnology and applied phycology. Blackwell Scientific Publications Ltd, Oxford, p 116

  • Liang YN, Sarkany N, Cui Y (2009) Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol Lett 31:1043–1049

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Tao Y, Wu J, Zhu Y, Gao B, Tang Y, Li A, Zhang C, Zhang Y (2014) Effective flocculation of target microalgae with self-flocculating microalgae induced by pH decrease. Bioresour Technol 167:367–375

    Article  PubMed  CAS  Google Scholar 

  • Lizzul AM, Hellier P, Purton S, Baganz F, Ladommatos N, Campos L (2014) Combined remediation and lipid production using Chlorella sorokiniana grown on wastewater and exhaust gases. Bioresour Technol 151:12–18

    Article  PubMed  CAS  Google Scholar 

  • Ma L, Dolphin D (1999) The metabolites of dietary chlorophylls. Phytochem 50:195–202

    Article  CAS  Google Scholar 

  • Martínez ME, Camacho F, Jiménez JM, Espínola JB (1997) Influence of light intensity on the kinetic and yield parameters of Chlorella pyrenoidosa mixotrophic growth. Process Biochem 32:93–98

    Article  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications, a review. Renew Sust Energy Rev 14:217–232

    Article  CAS  Google Scholar 

  • Metzger P, Largeau C (1999) Chemicals of Botryococcus braunii. In: Cohen Z (ed) Chemicals from microalgae. Taylor and Francis, London, pp 205–260

    Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–429

    Article  CAS  Google Scholar 

  • Qin J (2005) Bio-hydrocarbons from algae, impacts of temperature, light and salinity on algae growth. A report for the rural industries research and development corporation. Australia

  • Richmond A (1986) Handbook of microalgal mass culture. CRC Press Inc., Boca Raton

    Google Scholar 

  • Shelef G, Sukenik A, Green M (1984) Microalgae harvesting and processing: a literature review. Technion Research and Development Foundation Ltd., Haifa

    Book  Google Scholar 

  • Sterin JR (1973) Handbook of phycological methods, culture methods and growth measurements. Cambridge University Press, Cambridge

  • Suarez ER, Kralovec JA, Noseda MD, Ewart HS, Barrow CJ, Lumsden MD, Grindley TB (2005) Isolation, characterization and structural determination of a unique type of arabinogalactan from an immunostimulatory extract of Chlorella pyrenoidosa. Carbohydr Res 340:1489–1498

    Article  PubMed  CAS  Google Scholar 

  • Sudhir P, Murthy SDS (2004) Effect of salt stress on basic processes of phytosynthesis. Photosynthetica 42:481–486

    Article  CAS  Google Scholar 

  • Tansakul P, Savaddiraksa Y, Prasertsan P, Tongurai C (2005) Cultivation of the hydrocarbon-rich alga, Botyococcus braunii in secondary treated effluent from a sea food processing plant. Thai J Agri Sci 38(1–2):71–76

    Google Scholar 

  • Vandamme D, Foubert I, Meesschaert B, Muylaert K (2010) Flocculation of microalgae using cationic starch. J Appl Phycol 22:525–530

    Article  Google Scholar 

  • Villay A, Laroche C, Roriz D, Alaoui HE, Delbac F, Michaud P (2013) Optimisation of culture parameters for exopolysaccharides production by the microalga Rhodella violacea. Bioresour Technol 146:732–735

    Article  PubMed  CAS  Google Scholar 

  • Wang SK, Hu YR, Wang F, Stiles AR, Liu CZ (2014) Scale-up cultivation of Chlorella ellipsoidea from indoor to outdoor in bubble column bioreactors. Bioresour Technol 156:117–122

    Article  PubMed  CAS  Google Scholar 

  • Wu Z, Zhu Y, Huang W, Zhang C, Li T, Zhang Y, Li A (2012) Evaluation of flocculation induced by pH increase for harvesting microalgae and reuse of flocculated medium. Bioresour Technol 110:496–502

    Article  PubMed  CAS  Google Scholar 

  • Yeesang C, Chanthachum S, Cheirsilp B (2008) Sago starch as a low-cost carbon source for exopolysaccharide production by Lactobacillus kefiranofaciens. World J Microbiol Biotechnol 24(7):1195–1201

    Article  CAS  Google Scholar 

  • You T, Barnett SM (2004) Effect of light quality on production of extracellular polysaccharides and growth rate of Porphyridium cruentum. Biochem Eng J 19:251–258

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the financial support by Prince of Songkla University in the fiscal year of 2012 under Grant AGR550135S. The first and third authors are also supported by Thailand Research Fund under Grant No. RTA5780002. Thanks are also given to Dr. Brian Hodgson Faculty of Pharmaceutical Science, Prince of Songkla University, for assistance with the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamas Cheirsilp.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheirsilp, B., Mandik, Y.I. & Prasertsan, P. Evaluation of optimal conditions for cultivation of marine Chlorella sp. as potential sources of lipids, exopolymeric substances and pigments. Aquacult Int 24, 313–326 (2016). https://doi.org/10.1007/s10499-015-9927-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-015-9927-2

Keywords

Navigation