Skip to main content
Log in

Changes in lipid class content and composition of Isochrysis sp. (T-Iso) grown in batch culture

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

For decades, the microalgae Isochrysis spp. have been widely utilised as a live feed in aquaculture practices. This species possesses a number of favourable characteristics, notably its long-chain omega-3 polyunsaturated fatty acid (LC n-3 PUFA) content; primarily docosahexaenoic acid (DHA, 22:6n-3). This article describes the lipid class content and composition of this microalga grown in batch culture, covering the entirety of lag, log and stationary growth phases. The total lipid was highest in the lag phase (27 pg/cell). Total lipid significantly decreased in the exponential growth (7 pg/cell), then steadily increasing for the remainder of growth. The increase in total lipid was due to the accumulation of neutral lipid in the form of triacylglycerides. The DHA content (pg/cell) of the neutral lipid remained relatively unchanged for the duration of growth, with the influx of fatty acids being primarily myristic and palmitic acids. DHA (pg/cell) was found at relatively uniform amounts across all lipid classes. However, the DHA content as a percentage differed greatly between classes. The polar lipid class had a significantly higher DHA content, which peaked at 38 % of all polar lipid in log growth. The primary PUFA species present in the glycolipid class was stearidonic acid (18:4n-3). This work gives an overview of the lipid content and composition of Isochrysis sp. (T-Iso) over the entirety of its growth under batch culture. The lipid profile for this species at different stages of culture provides a basal data set that is useful for comparative studies using this organism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ALA:

α-linolenic acid

DHA:

Docosahexaenoic acid

EPA:

Eicosapentaenoic acid

FA:

Fatty acid

FAME:

Fatty acid methyl ester

FFA:

Free fatty acid

FID:

Flame ionisation detector

GC:

Gas chromatography

GC–MS:

Gas chromatography–mass spectrometry

GL:

Glycolipid

LC n-3 PUFA:

Long-chain omega-3 polyunsaturated fatty acid

MAG:

Monoacylglycerol

MUFA:

Monounsaturated fatty acid

n-3:

Omega-3

NL:

Neutral lipid

PL:

Polar lipid

PUFA:

Polyunsaturated fatty acid

SDA:

Stearidonic acid

SPE:

Solid-phase extraction

TAG:

Triacylglycerol

T-Iso:

Tahitian isolate

TL:

Total lipid

References

  • Ackman RG, Tocher CS, McLachlan J (1968) Marine phytoplankter fatty acids. J Fish Res Board Can 25(8):1603–1620

    Article  CAS  Google Scholar 

  • Ahlgren G, Gustafsson I, Boberg M (1992) Fatty acid content and chemical composition of freshwater microalgae. J Phycol 28(1):37–50

    Article  CAS  Google Scholar 

  • Alonso DL, Belarbi EH, Fernandez-Sevilla JM, Rodriguez-Ruiz J, Grima EM (2000) Acyl lipid composition variation related to culture age and nitrogen concentration in continuous culture of the microalga Phaeodactylum tricornutum. Phytochemistry 54(5):461–471

    Article  CAS  PubMed  Google Scholar 

  • Bendif EM, Probert I, Schroeder DC, Vargas C (2013) On the description of Tisochrysis lutea gen. nov. sp. nov. and Isochrysis nuda sp. nov. in the Isochrysidales, and the transfer of Dicrateria to the Prymnesiales (Haptophyta). J Appl Phycol 25(6):1763–1776

    Article  CAS  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  • Brown MR (2002) Nutritional value and use of microalgae in aquaculture. Avances en Nutrición Acuícola VI Memorias del VI Simposium Internacional de Nutrición Acuícola, Cancún, Quintana Roo, México

  • Brown MR, Dunstan GA, Jeffrey SW, Volkman JK, Barrett SM, Leroi JM (1993) The influence of irradiance on the biochemical composition of the prymnesiophyte Isochrysis sp (clone T-ISO). J Phycol 29(5):601–612

    Article  CAS  Google Scholar 

  • Chong EWT, Kreis AJ, Wong TY, Simpson JA, Guymer RH (2008) Dietary omega-3 fatty acid and fish intake in the primary prevention of age-related macular degeneration: a systematic review and meta-analysis. Arch Ophthalmol 126(6):826–833

    Article  PubMed  Google Scholar 

  • Cole GM, Ma QL, Frautschy SA (2009) Omega-3 fatty acids and dementia. Prostaglandins Leukot Essent Fatty Acids 81(2–3):213–221

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Coutteau P, Sorgeloos P (1992) The use of algal substitutes and the requirements for live algae in the hatchery and nursery rearing of bivalve molluscs: an international survey. J Shellfish Res 11(2):467–476

    Google Scholar 

  • Delaunay F, Marty Y, Moal J, Samain JF (1993) The effect of monospecific algal diets on growth and fatty acid composition of Pecten maximus (l) larvae. J Exp Mar Biol Ecol 173(2):163–179

    Article  CAS  Google Scholar 

  • Delgado-Lista J, Perez-Martinez P, Lopez-Miranda J, Perez-Jimenez F (2012) Long chain omega-3 fatty acids and cardiovascular disease: a systematic review. Br J Nutr 107:201–213

    Article  Google Scholar 

  • Dunstan GA, Volkman JK, Barrett SM, Garland CD (1993) Changes in the lipid composition and maximisation of the polyunsaturated fatty acid content of three microalgae grown in mass culture. J Appl Phycol 5:71–83

    Article  CAS  Google Scholar 

  • Emdadi D, Berland B (1989) Variation in lipid class composition during batch growth of Nannochloropsis salina and Pavlova lutheri. Mar Chem 26(3):215–225

    Article  CAS  Google Scholar 

  • Evjemo JO, Vadstein O, Olsen Y (2000) Feeding and assimilation kinetics of Artemia franciscana fed Isochrysis galbana (clone T. Iso). Mar Biol 136(6):1099–1109

    Article  Google Scholar 

  • Ferreira M, Maseda A, Fábregas J, Otero A (2008) Enriching rotifers with “premium” microalgae. Isochrysis aff. galbana clone T-ISO. Aquaculture 279(1–4):126–130

    Article  Google Scholar 

  • Fidalgo JP, Cid A, Torres E, Sukenik A, Herrero C (1998) Effects of nitrogen source and growth phase on proximate biochemical composition, lipid classes and fatty acid profile of the marine microalga Isochrysis galbana. Aquaculture 166:105–116

    Article  CAS  Google Scholar 

  • Fontagne S, Geurden I, Escaffre AM, Bergot P (1998) Histological changes induced by dietary phospholipids in intestine and liver of common carp (Cyprinus carpio L.) larvae. Aquaculture 161(1–4):213–223

    Article  CAS  Google Scholar 

  • Guedes AC, Meireles LA, Amaro HM, Malcata FX (2010) Changes in lipid class and fatty acid composition of cultures of Pavlova lutheri, in response to light intensity. J Am Oil Chem Soc 87(7):791–801

    Article  CAS  Google Scholar 

  • Hartman L, Lago RCA (1997) Rapid preparation of fatty acid methyl esters from lipids. Lab Pract 22:475–476

    Google Scholar 

  • Helm MM, Laing I (1987) Preliminary observations on the nutritional value of ‘Tahiti Isochrysis’ to bivalve larvae. Aquaculture 62(3–4):281–288

    Article  Google Scholar 

  • Izquierdo M, Koven W (2011) Lipids. In: Holt GJ (ed) Larval fish nutrition. Wiley-Blackwell, New York, pp 47–81

    Chapter  Google Scholar 

  • Karayanni H, Christaki U, VanWambeke F, Dalby AP (2004) Evaluation of double formalin—lugol’s fixation in assessing number and biomass of ciliates: an example of estimations at mesoscale in NE Atlantic. J Microbiol Methods 56:349–358

    Article  PubMed  Google Scholar 

  • Khozin I, Adlerstein D, Bigongo C, Heimer YM, Cohen Z (1997) Elucidation of the biosynthesis of eicosapentaenoic acid in the microalga Porphyridium cruentum.2. Studies with radiolabeled precursors. Plant Physiol 114(1):223–230

    PubMed Central  CAS  PubMed  Google Scholar 

  • Langdon CJ, Waldock MJ (1981) The effect of algal and artificial diets on the growth and fatty acid composition of Crassostrea gigas spat. J Mar Biol Assoc UK 61(2):431–448

    Article  CAS  Google Scholar 

  • Lynn SG, Kilham SS, Kreeger DA, Interlandi SJ (2000) Effect of nutrient availability on the biochemical and elemental stoichiometry in the freshwater diatom Stephanodiscus minutulus (Bacillariophyceae). J Phycol 36(3):510–522

    Article  CAS  Google Scholar 

  • Mai K, Mercer JP, Donlon J (1996) Comparative studies on the nutrition of two species of abalone, Haliotis tuberculata L. and Haliotis discus hannai Ino. V. The role of polyunsaturated fatty acids of macroalgae in abalone nutrition. Aquaculture 139(1–2):77–89

    Article  CAS  Google Scholar 

  • Maréchal E, Block MA, Dorne AJ, Douce R, Joyard J (1997) Lipid synthesis and metabolism in the plastid envelope. Physiol Plant 100(1):65–77

    Article  Google Scholar 

  • Martínez-Fernández E, Acosta-Salmón H, Rangel-Dávalos C (2004) Ingestion and digestion of 10 species of microalgae by winged pearl oyster Pteria sterna (Gould, 1851) larvae. Aquaculture 230(1–4):417–423

    Article  Google Scholar 

  • Miller MR, Quek S, Staehler K, Nalder T, Packer MA (2012) Changes in oil content, lipid class and fatty acid composition of the microalga Chaetoceros calcitrans over different phases of batch culture. Aquacult Res 45(10):1634–1647

    Article  Google Scholar 

  • Mortensen SH, Børsheim KY, Rainuzzo JR, Knutsen G (1988) Fatty acid and elemental composition of the marine diatom Chaetoceros gracilis Schütt. Effects of silicate deprivation, temperature and light intensity. J Exp Mar Biol Ecol 122(2):173–185

    Article  CAS  Google Scholar 

  • Parrish CC, Wangersky PJ (1987) Particulate and dissolved lipid classes in cultures of Phaeodactylum tricornutum grown in cage culture turbidostats with a range of nitrogen supply rates. Mar Ecol Prog Ser 35(1–2):119–128

    Article  CAS  Google Scholar 

  • Pettersen AK, Turchini GM, Jahangard S, Ingram BA, Sherman CDH (2010) Effects of different microalgae on survival, settlement and fatty acid composition of blue mussel (Mytilus galloprovincialis) larvae. Aquaculture 309:115–124

    Article  CAS  Google Scholar 

  • Ragg NLC, King N, Watts WE, Morrish J (2010) Optimising the delivery of the key dietary diatom Chatoceros clacitrans to intensively cultured greenshell™ mussel larvae, Perna canaliculus. Aquaculture 306:270–280

    Article  Google Scholar 

  • Reitan KI (2011) Digestion of lipids and carbohydrates from microalgae (Chaetoceros muelleri Lemmermann and Isochrysis aff. galbana clone T-ISO) in juvenile scallops (Pecten maximus L.). Aquacult Res 42(10):1530–1538

    Article  CAS  Google Scholar 

  • Renaud SM, Parry DL (1994) Microalgae for use in tropical aquaculture.2, Effect of salinity on growth, gross chemical composition and fatty acid composition of 3 species of marine microalgae. J Appl Phycol 6(3):347–356

    Article  CAS  Google Scholar 

  • Renaud SM, Parry DL, Thinh LV, Kuo C, Padovan A, Sammy N (1991) Effect of light intensity on the proximate biochemical and fatty acid composition of Isochrysis sp and Nannochloropsis oculata for use in tropical aquaculture. J Appl Phycol 3(1):43–53

    Article  CAS  Google Scholar 

  • Renaud SM, Zhou HC, Parry DL, Thinh LV, Woo KC (1995) Effect of temperature on the growth, total lipid content and fatty acid composition of recently isolated tropical microalgae Isochrysis sp, Nitzschia closterium, Nitzschia paleacea, and commercial species Isochrysis sp (clone T ISO). J Appl Phycol 7(6):595–602

    Article  CAS  Google Scholar 

  • Richard D, Bausero P, Schneider C, Visioli F (2009) Polyunsaturated fatty acids and cardiovascular disease. Cell Mol Life Sci 66(20):3277–3288

    Article  CAS  PubMed  Google Scholar 

  • Rico-Villa B, Le Coz JR, Mingant C, Robert R (2006) Influence of phytoplankton diet mixtures on microalgae consumption, larval development and settlement of the Pacific oyster Crassostrea gigas (Thunberg). Aquaculture 256(1–4):377–388

    Article  CAS  Google Scholar 

  • Roncarati A, Meluzzi A, Acciarri S, Tallarico N, Melotti P (2004) Fatty acid composition of different microalgae strains (Nannochloropsis sp., Nannochloropsis oculata (Droop) Hibberd, Nannochloris atomus Butcher and Isochrysis sp.) according to the culture phase and the carbon dioxide concentration. J World Aquacult Soc 35(3):401–411

    Article  Google Scholar 

  • Sargent JR, McEvoy LA, Bell JG (1997) Requirements, presentation and sources of polyunsaturated fatty acids in marine fish larval feeds. Aquaculture 155(1–4):117–127

    Article  CAS  Google Scholar 

  • Sargent JR, Bell G, McEvoy LA, Tocher D, Estevez A (1999) Recent developments in the essential fatty acid nutrition of fish. Aquaculture 177(1–4):191–199

    Article  CAS  Google Scholar 

  • Schuchardt JP, Hahn A (2013) Bioavailability of long-chain omega-3 fatty acids. Prostaglandins Leukot Essent Fatty Acids 89(1):1–8

    Article  CAS  PubMed  Google Scholar 

  • Schuchardt JP, Schneider I, Meyer H, Neubronner J, von Schacky C, Hahn A (2011) Incorporation of EPA and DHA into plasma phospholipids in response to different omega-3 fatty acid formulations—a comparative bioavailability study of fish oil vs. krill oil. Lipids Health Dis 10:145–151

  • Simopoulos AP (2002) Omega-3 fatty acids in inflammation and autoimmune diseases. J Am Coll Nutr 21(6):495–505

    Article  CAS  PubMed  Google Scholar 

  • Stern N, Tietz A (1993) Octadecatetraenoate synthesis in the unicellular alga Isochrysis galbana: studies with intact and broken chloroplasts. Biochim Biophys Acta 1167:248–256

    Article  CAS  PubMed  Google Scholar 

  • Stillwell W, Wassall SR (2003) Docosahexaenoic acid: membrane properties of a unique fatty acid. Chem Phys Lipids 126(1):1–27

    Article  CAS  PubMed  Google Scholar 

  • Sukenik A, Wahnon R (1991) Biochemical quality of marine unicellular algae with special emphasis on lipid composition.1. Isochrysis galbana. Aquaculture 97(1):61–72

    Article  CAS  Google Scholar 

  • Tannock S (2006) Improved mass cultivation of the marine diatom Chaetoceros calcitrans for shellfish hatcheries. M.Sc. Thesis, Massey University, Palmerston North

  • Thompson PA, Guo MX, Harrison PJ (1992) Effects of variation in temperature.1. On the biochemical composition of 8 species of marine phytoplankton. J Phycol 28(4):481–488

    Article  CAS  Google Scholar 

  • Valenzuela-Espinoza E, Millan-Nunez R, Nunez-Cebrero F (1999) Biomass production and nutrient uptake by Isochrysis aff. galbana (Clone T-ISO) cultured with a low cost alternative to the f/2 medium. Aquacult Eng 20(3):135–147

    Article  Google Scholar 

  • Volkman JK, Jeffrey SW, Nichols PD, Rogers GI, Garland CD (1989) Fatty acid and lipid composition of 10 species of microalgae used in mariculture. J Exp Mar Biol Ecol 128:219–240

    Article  CAS  Google Scholar 

  • Wikfors GH, Patterson GW (1994) Differences in strains of Isochrysis of importance to mariculture. Aquaculture 123(1–2):127–135

    Article  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to Nicky Roughton and Cara McGregor of the Cawthron Institute for their aid in the culturing of microalgae. We also thank the late Kathrin Stähler for her contributions in lipid analysis. This research was supported by The New Zealand Ministry of Science and Innovation under project C02X0806, ‘Engineered Marine Molecules’ and PhD scholarships from Deakin University and the University of Auckland. The authors declare that there are no conflicts of interest with regard to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim D. Nalder.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nalder, T.D., Miller, M.R. & Packer, M.A. Changes in lipid class content and composition of Isochrysis sp. (T-Iso) grown in batch culture. Aquacult Int 23, 1293–1312 (2015). https://doi.org/10.1007/s10499-015-9884-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-015-9884-9

Keywords

Navigation