Skip to main content
Log in

Metabolic, immune responses in prawn (Penaeus monodon) exposed to ambient ammonia

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

This article reports on the changes in the metabolic detoxification indices of the hepatopancreas, muscle, and gill tissues of juvenile prawn (body length of 5.0 ± 0.5 cm) of Penaeus monodon at different ammonia levels (at concentrations of 0, 10, 20, and 30 mg/L) as well as the immune-related gene expressions of the prawn under elevated ammonia (30 mg/L) stress. Results showed that glutamine synthetase (GS) activity and glutamine (Gln) content were higher in the muscle than those in the gill and hepatopancreas, not only at the normal level but also under stress. The GS activity and the Gln concentration at 96 h were significantly higher than those in the control group (p < 0.05) and positively correlated with the ammonia concentration from 0 to 48 h. The gene expressions of C-lysozyme, antibacterial peptide (crustin), and antilipopolysaccharide factor in P. monodon were upregulated at the initial period and downregulated at the later period under high ammonia stress (30 mg/L ammonia), except for the crustin gene in muscle, which maintained a continuous high expression from 0 to 96 h (p < 0.05). Our results confirmed that ammonia stress induced a detoxification metabolic pathway at least dependent on Gln synthesis in juvenile prawn. Body immunity was also activated at the initial period and decreased at the later period of high ammonia stress. Muscle is a sensitive tissue reflecting the ammonia stress state not only by physiological index but also by crustin mRNA level in juvenile prawn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allan GL, Maguire GB, Hopkins SJ (1990) Acute and chronic toxicity of ammonia to juvenile Metapenaeus macleayi and Penaeus monodon and the influence of low dissolved-oxygen levels. Aquaculture 91:265–280

    Article  CAS  Google Scholar 

  • Anderson PM, Broderius MA, Fong KC, Tsui KNT, Chew SF, Ip YK (2002) Glutamine synthetase expression in liver, muscle, stomach and intestine of Bostrichyths sinensis in response to exposure to a high exogenous ammonia concentration. J Exp Biol 205:2053–2065

    CAS  PubMed  Google Scholar 

  • Chen JC, Chen KW (1996) Hemolymph oxyhemocyanin, protein levels, acid-base balance, and ammonia and urea excretions of Penaeus japonicus exposed to saponin at different salinity levels. Aquat Toxicol 36:115–128

    Article  CAS  Google Scholar 

  • Chen JC, Cheng SY (2000) Recovery of Penaeus monodon from functional anemia after exposure to sublethal concentration of nitrite at different pH levels. Aquat Toxicol 50:73–83

    Article  CAS  PubMed  Google Scholar 

  • Cheng SY, Shieh LW, Chen JC (2013) Changes in hemolymph oxyhemocyanin, acid–base balance, and electrolytes in Marsupenaeus japonicus under combined ammonia and nitrite stress. Aquat Toxicol 15:132–138

    Article  Google Scholar 

  • Colt JE, Armstrong DA (1981) Nitrogen toxicity to crustaceans, fish, and molluscs. In: Allen LJ, Kinney EC (eds) Proceedings of bio-engineering symposium for fish culture, vol 1. Fish Culture Section of the American Fisheries Society FCS, Bethesda, pp 34–47

    Google Scholar 

  • Cutler CP, Martinez AS, Cramb G (2007) The role of aquaporin 3 in teleost fish. Comp Biochem Phys A 148:82–91

    Article  Google Scholar 

  • de la Vega E, Hall MR, Wilson KJ, Reverter A, Woods RG, Degnan BM (2007) Stress-induced gene expression profiling in the black tiger shrimp Penaeus monodon. Physiol Genomics 31:126–138

    Article  PubMed  Google Scholar 

  • Eddy FB (2005) Ammonia in estuaries and effects on fish. J Fish Biol 67:1495–1513

    Article  CAS  Google Scholar 

  • Fagutao FF, Maningas MB, Kondo H, Aoki T, Hirono I (2012) Transglutaminase regulates immune-related genes in shrimp. Fish Shellfish Immun 32:711–715

    Article  CAS  Google Scholar 

  • Han CY, Zheng QM, Chen GD, Liu LX (2014) Effects of ammonia-N on non-specific immunity of tilapia (Oreochromis niloticus × O. areus). South China Fish Sci 10:47–52

    Google Scholar 

  • Hong ML, Chen LQ, Gu SZ (2007) Effects of ammonia exposure on immunity indicators of haemolymph and histological structure of hepatopancreas in Chinese mitten crab (Eriocheir sinensis). J Fish Sci China 14:412–417 (in Chinese)

    CAS  Google Scholar 

  • Jensen FB (2003) Nitrite disrupts multiple physiological functions in aquatic animals. Comp Biochem Phys A 135:9–24

    Article  Google Scholar 

  • Kolarevic J, Takle H, Felip O, Ytteborg E, Selset R, Good CM, Baeverfjord G, Asgård T, Terjesen BF (2012) Molecular and physiological responses to long-term sublethal ammonia exposure in Atlantic salmon (Salmo salar). Aquat Toxicol 124:48–57

    Article  PubMed  Google Scholar 

  • Li Y, Yang QB, Su TF, Zhou FL, Yang LS, Huang JH (2012) The toxicity of ammonia N on Penaeus monodon and immune parameters. J Shanghai Ocean Univ 21:358–361 (in Chinese)

    CAS  Google Scholar 

  • Lim CB, Chew SF, Anderson PM, Ip YK (2001) Reduction in the rates of protein and amino acid catabolism to slow down the accumulation of endogenous ammonia: a strategy potentially adopted by mudskippers (Periophthalmodon schlosseri snd Boleophthalmus boddaerti) during aerial exposure in constant darkness. J Exp Biol 204:1605–1614

    CAS  PubMed  Google Scholar 

  • Liu CH, Chen JC (2004) Effect of ammonia on the immune response of white shrimp Litopenaeus vannarnei and its susceptibility to Vibrio alginolyticus. Fish Shellfish Immun 16:321–334

    Article  CAS  Google Scholar 

  • Mai WJ, Hu CQ (2009a) a. Molecular cloning, characterization, expression and antibacterial analysis of a lysozyme homologue from Fenneropenaeus merguiensis. Mol Biol Rep 36:1587–1595

    Article  CAS  PubMed  Google Scholar 

  • Mai WJ, Hu CQ (2009b) b. cDNA cloning, expression and antibacterial activity of lysozyme C in the blue shrimp (Litopenaeus stylirostris). Prog Nat Sci 19:837–844

    Article  CAS  Google Scholar 

  • McKenzie DJ, Shingles A, Taylor EW (2003) Sub-lethal plasma ammonia accumulation and the exercise performance of salmonids. Comp Biochem Phys A 135:515–526

    Article  CAS  Google Scholar 

  • Muir PR, Sutton DC, Owens L (1991) Nitrate toxicity to Penaeus monodon protozoea. Mar Biol 108:67–71

    Article  CAS  Google Scholar 

  • Nakada T, Westhoff CM, Kato A, Hirose S (2007) Ammonia secretion from fish gill depends on a set of Rh glycoproteins. FASEB J 21:1067–1074

    Article  CAS  PubMed  Google Scholar 

  • Racotta IS, Hernandez-Herrera R (2000) Metabolic responses of the white shrimp, Penaeus vannamei, to ambient ammonia. Comp Biochem Phys A 125:437–443

    Article  CAS  Google Scholar 

  • Randall DJ, Tsui TKN (2002) Ammonia toxicity in fish. Mar Pollut Bull 45:17–23

    Article  CAS  PubMed  Google Scholar 

  • Shankar RA, Anderson PM (1985) Purification and properties of glutamine synthetase from the liver of Squalus acanthias. Arch Biochem Biophy 239:248–259

    Article  CAS  Google Scholar 

  • Söderhäll K, Cerenius L (1992) Crustacean immunity. Annu Rev Fish Dis 2:3–23

    Article  Google Scholar 

  • Sun MM, Huang JH, Yang QB, Zhou FL, Wen WG, Chen X, Jiang SG (2011) Comparison on characteristics of growth and resistance to ammonia among 13 families of Penaeus monodon. J Shanghai Ocean Univ 20:511–516 (in Chinese)

    Google Scholar 

  • Tully O, Nolan DT (2000) Environmental factors affecting immune responses in Crustacea. Aquaculture 191:121–131

    Article  Google Scholar 

  • Vargas-Albores F, Yepiz-Plascencia G, Jiménez-Vega F, Avila-Villa A (2004) Structural and functional differences of Litopenaeus vannamei crustins. Comp Biochem Phys B 138:415–422

    Article  Google Scholar 

  • Vazquez L, Alpuche J, Maldonado G, Agundis C, Pereyra-Morales A, Zenteno E (2009) Review: immunity mechanisms in crustaceans. Innate Immun 15:179–188

    Article  CAS  PubMed  Google Scholar 

  • Walsh PJ, Grosell M, Goss GG, Bergman HL, Bergman AN, Wilson P, Laurent P, Alper SL, Smith CP, Kamunde C, Wood CM (2001) Physiological and molecular characterization of urea transport by the gills of the Lake Magadi tilapia (Alcolapia grahami). J Exp Biol 204:509–520

    CAS  PubMed  Google Scholar 

  • Wang X, Wang L, Yao C, Qiu L, Zhang H, Zhi Z, Song L (2012) Alternation of immune parameters and cellular energy allocation of Chlamys farreri under ammonia-N exposure and Vibrio anguillarum challenge. Fish Shellfish Immun 32:741–749

    Article  CAS  Google Scholar 

  • Webb JT, Brown GW (1975) Some Properties and occurrence of glutamine synthetase in fish. Comp Biochem Phys B 54:171–175

    Google Scholar 

  • Weihrauch D, Wilkie MP, Walsh PJ (2009) Ammonia and urea transporters in gills of fish and aquatic crustaceans. J Exp Biol 212:1716–1730

    Article  CAS  PubMed  Google Scholar 

  • Wilkie MP, Pamenter ME, Duquette S, Dhyiebi H, Sangha N, Skelton G, Smith MD, Buck LT (2011) The relationship between NMDA receptor function and the high ammonia tolerance of anoxia-tolerant goldfish. J Exp Biol 214:4107–4120

    Article  CAS  PubMed  Google Scholar 

  • Wood CM, Gilmour KM, Perry SF, Part P, Walsh PJ (1998) Pulsatile urea excretion in gulf toadfish (Opsanus beta): evidence for activation of a specific facilitated diffusion transport system. J Exp Biol 201:805–817

    CAS  PubMed  Google Scholar 

  • Wright PA, Wood CM (2009) A new paradigm for ammonia excretion in aquaculture animals: role of Rhesus (Rh) glycoproteins. J Exp Biol 212:2303–2312

    Article  CAS  PubMed  Google Scholar 

  • Wright PA, Steele SL, Huitema A, Bernier NJ (2007) Induction of four glutamine synthetase genes in brain of rainbow trout in response to elevated environmental ammonia. J Exp Biol 210:2905–2911

    Article  CAS  PubMed  Google Scholar 

  • Yang LS, Liu XJ, Huang JH, Yang QB, Qiu LH, Liu WJ, Jiang SG (2012) Molecular characterization and expression profile of MAP2K1ip1/MP1 gene from tiger shrimp, Penaeus monodon. Mol Biol Rep 39:5811–5818

    Article  CAS  PubMed  Google Scholar 

  • Yue F, Pan L, Xie P, Zheng D, Li J (2010) Immune responses and expression of immune-related genes in swimming crab Portunus trituberculatus exposed to elevated ambient ammonia-N stress. Comp Biochem Phys A 157:246–251

    Article  Google Scholar 

  • Zhou QQ, Yang DZ, Luo YJ, Li SZ, Liu FY, Wang GS (2011) Over-starvation aggravates intestinal injury and promotes bacterial and endotoxin translocation under high-altitude hypoxic environment. World J Gastroentero 17:1584–1593

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National 863 Program (2012AA10A409), China Agriculture Research System (CARS-47), National Nature Foundation of China (No. 31202019), Guangdong marine fishery technology promotion special (A201201B02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Yang, Q., Jiang, S. et al. Metabolic, immune responses in prawn (Penaeus monodon) exposed to ambient ammonia. Aquacult Int 23, 1049–1062 (2015). https://doi.org/10.1007/s10499-014-9863-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-014-9863-6

Keywords

Navigation