Skip to main content
Log in

CO2 Outgassing from Spring Waters

  • Original Article
  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

CO2 released from lakes, rivers, and estuaries has been included in estimates of the global CO2 budget; however, CO2 released from carbonate springs has not been routinely included in the estimate of the global CO2 budget. The omission of carbonate spring water as a source of CO2 might result in an underestimation of the overall flux of CO2 from surface waters to the atmosphere. In this study, the flux of CO2 from carbonate springs was calculated and compared to the rate of outgassing of CO2 reported in the literature for other surface water bodies. The calculated fluxes of CO2 from carbonate springs ranged 280–380,000 mmol m−2 d−1. A range that is larger than the range of CO2 fluxes reported for estuaries (100–1900 mmol m−2 d−1), headwater streams and rivers (100–1600 mmol m−2 d−1), freshwater lakes (−300 to 3200 mmol m−2 d−1), and saline lakes (−300 to 9900 mmol m−2 d−1). This work demonstrates that the outgassing of CO2 from springs should be included in the global CO2 budget.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anderson DE, Striegl RG, Stannard DI, Michmerhuizen CM, McConnaughey TA, LaBaugh JW (1999) Estimating lake-atmosphere CO2 exchange. Limnol Oceanogr 44(4):988–1001

    Article  Google Scholar 

  • Atkins ML, Santos IR, Ruiz-Halpern S, Maher DT (2013) Carbon dioxide dynamics driven by groundwater discharge in a coastal floodplain creek. J Hydrol 493:30–42

    Article  Google Scholar 

  • Back W, Landa ER, Meeks L (1995) Bottled water, spas, and early years of water chemistry. Groundwater 33(4):605–614

    Article  Google Scholar 

  • Banner JL, Wasserburg G, Dobson PF, Carpenter AB, Moore CH (1989) Isotopic and trace element constraints on the origin and evolution of saline groundwaters from central Missouri. Geochim Cosmochim Acta 53(2):383–398

    Article  Google Scholar 

  • Borges A, Delille B, Schiettecatte L-S, Gazeau F, Abril G, Frankignoulle M (2004) Gas transfer velocities of CO2 in three European estuaries (Randers Fjord, Scheldt and Thames). Limnol Oceanogr 49(5):1630

    Article  Google Scholar 

  • Butman D, Raymond PA (2011) Significant efflux of carbon dioxide from streams and rivers in the United States. Nat Geosci 4(12):839–842

    Article  Google Scholar 

  • Carpenter AB, Miller JC (1969) Geochemistry of saline subsurface water, Saline County (Missouri). Chem Geol 4(1):135–167

    Article  Google Scholar 

  • Christenson SC, Hunt AG, Parkhurst DL (2009) Geochemical investigation of the Arbuckle-Simpson aquifer, South-Central Oklahoma, 2004-06. US Department of the Interior, US Geological Survey

    Google Scholar 

  • Clark JF, Schlosser P, Wanninkhof R, Simpson HJ, Schuster WS, Ho DT (1995) Gas transfer velocities for SF6 and 3He in a small pond at low wind speeds. Geophys Res Lett 22(2):93–96

    Article  Google Scholar 

  • Cole JJ, Caraco NF (1998) Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by. Limnol Oceanogr 43(4):647–656

    Article  Google Scholar 

  • Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing JA, Middelburg JJ (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10(1):172–185

    Article  Google Scholar 

  • Dandurand J, Gout R, Hoefs J, Menschel G, Schott J, Usdowski E (1982) Kinetically controlled variations of major components and carbon and oxygen isotopes in a calcite-precipitating spring. Chem Geol 36(3):299–315

    Article  Google Scholar 

  • Davis SN, Davis AG (1997) Saratoga Springs and early hydrogeochemistry in the United States. Groundwater 35(2):347–356

    Article  Google Scholar 

  • Davis SN, Cecil LD, Zreda M, Moysey S (2001) Chlorine-36, bromide, and the origin of spring water. Chem Geol 179(1):3–16

    Article  Google Scholar 

  • Duarte CM, Prairie YT, Montes C, Cole JJ, Striegl R, Melack J Downing JA (2008) CO2 emissions from saline lakes: A global estimate of a surprisingly large flux. J Geophys Res Biogeosci 113(G4)

  • Grasby SE, Lepitzki DA (2002) Physical and chemical properties of the Sulphur Mountain thermal springs, Banff National Park, and implications for endangered snails. Can J Earth Sci 39(9):1349–1361

    Article  Google Scholar 

  • Grasby SE, Hutcheon I, Krouse H (2000) The influence of water–rock interaction on the chemistry of thermal springs in western Canada. Appl Geochem 15(4):439–454

    Article  Google Scholar 

  • Hamilton JD, Kelly CA, Rudd JW, Hesslein RH, Roulet NT (1994) Flux to the atmosphere of CH4 and CO2 from wetland ponds on the Hudson Bay lowlands (HBLs). J Geophys Res Atmos 99(D1):1495–1510

    Article  Google Scholar 

  • Hautman DP, Munch DJ (1997) Method 300.1 Determination of inorganic anions in drinking water by ion chromatography. US Environmental Protection Agency, Cincinnati

    Google Scholar 

  • Helz G, Sinex S (1974) Chemical equilibria in the thermal spring waters of Virginia. Geochim Cosmochim Acta 38(12):1807–1820

    Article  Google Scholar 

  • Herman JS, Lorah MM (1988) Calcite precipitation rates in the field: measurement and prediction for a travertine-depositing stream. Geochim Cosmochim Acta 52(10):2347–2355

    Article  Google Scholar 

  • Jacobson RL, Usdowski E (1975) Geochemical controls on a calcite precipitating spring. Contrib Miner Petrol 51(1):65–74

    Article  Google Scholar 

  • Johnson MS, Lehmann J, Riha SJ, Krusche AV, Richey JE, Ometto JPH, Couto EG (2008) CO2 efflux from Amazonian headwater streams represents a significant fate for deep soil respiration. Geophys Res Lett 35(17)

  • Langmuir D (1971) The geochemistry of some carbonate ground waters in central Pennsylvania. Geochim Cosmochim Acta 35(10):1023–1045

    Article  Google Scholar 

  • Long DT, Wilson TP, Takacs MJ, Rezabek DH (1988) Stable-isotope geochemistry of saline near-surface ground water: East-central Michigan basin. Geol Soc Am Bull 100(10):1568–1577

    Article  Google Scholar 

  • Lorah MM, Herman JS (1988) The chemical evolution of a travertine-depositing stream: geochemical processes and mass transfer reactions. Water Resour Res 24(9):1541–1552

    Article  Google Scholar 

  • Louis VLS, Kelly CA, Duchemin É, Rudd JW, Rosenberg DM (2000) Reservoir Surfaces as Sources of Greenhouse Gases to the Atmosphere: a Global Estimate Reservoirs are sources of greenhouse gases to the atmosphere, and their surface areas have increased to the point where they should be included in global inventories of anthropogenic emissions of greenhouse gases. Bioscience 50(9):766–775

    Article  Google Scholar 

  • Luiszer FG (2009) Speleogenesis of cave of the winds, Manitou springs, Colorado: Select Field Guides to Cave and Karst Lands of the United States, vol 15

  • Lund JW (1996) Balneological use of thermal and mineral waters in the USA. Geothermics 25(1):103–147

    Article  Google Scholar 

  • Maas B (2015) Interpretation of Geochemical Signatures from Modern Carbonate Springs to the Rock Record: (Ph.D. thesis), v. Louisiana State University, p 91

  • Macpherson G (2009) CO2 distribution in groundwater and the impact of groundwater extraction on the global C cycle. Chem Geol 264(1):328–336

    Article  Google Scholar 

  • Martin T, Brockhoff C, Creed J, Group E (1994) Method 200.7: Determination of metals and trace elements in water and wastes by inductively coupled plasma-atomic emission spectrometry. Environmental Monitoring Systems Laboratory, US Environmental Protection Agency, Cincinnati

    Google Scholar 

  • Martin JB, Brown A, Ezell J (2013) Do carbonate karst terrains affect the global carbon cycle? Acta Carsol 42(2–3):187

    Google Scholar 

  • Mayo AL, Muller AB (1997) Low temperature diagenetic–metamorphic and magmatic contributions of external CO2 gas to a shallow ground water system. J Hydrol 194(1):286–304

    Article  Google Scholar 

  • Nordstrom DK, Ball JW, McCleskey RB (2005) Ground water to surface water: chemistry of thermal outflows in Yellowstone National Park. Geotherm Biol Geochem Yellowstone National Park p 73–94

  • Panno S, Hackley K, Hwang H, Greenberg S, Krapac I, Landsberger S, O’Kelly D (2005) Database for the characterization and identification of the sources of sodium and chloride in natural waters of Illinois, Illinois State Geological Survey

  • Parkhurst DL, Appelo C (1999) User’s guide to PHREEQC (Version 2): A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations

  • Piao S, Sitch S, Ciais P, Friedlingstein P, Peylin P, Wang X, Ahlström A, Anav A, Canadell JG, Cong N (2013) Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends. Glob Change Biol 19(7):2117–2132

    Article  Google Scholar 

  • Raymond PA, Cole JJ (2001) Gas exchange in rivers and estuaries: choosing a gas transfer velocity. Estuaries Coasts 24(2):312–317

    Article  Google Scholar 

  • Raymond PA, Bauer JE, Cole JJ (2000) Atmospheric CO2 evasion, dissolved inorganic carbon production, and net heterotrophy in the York River estuary. Limnol Oceanogr 45(8):1707–1717

    Article  Google Scholar 

  • Riera JL, Schindler JE, Kratz TK (1999) Seasonal dynamics of carbon dioxide and methane in two clear-water lakes and two bog lakes in northern Wisconsin, USA. Can J Fish Aquat Sci 56(2):265–274

    Article  Google Scholar 

  • Rounds S (2012) Alkalinity and acid neutralizing capacity (ver. 4.0): US Geological Survey Techniques of Water-Resources Investigations, book 9, chap. A6., sec. 6.6

  • Sellers P, Hesslein RH, Kelly CAK (1995) Continuous measurement of CO2 for estimation of air-water fluxes in lakes: an in situ technique. Limnol Oceanogr 40(3):575–581

    Article  Google Scholar 

  • Tranvik LJ, Downing JA, Cotner JB, Loiselle SA, Striegl RG, Ballatore TJ, Dillon P, Finlay K, Fortino K, Knoll LB (2009) Lakes and reservoirs as regulators of carbon cycling and climate. Limnol Oceanogr 54(6part2):2298–2314

    Article  Google Scholar 

  • Wanninkhof R (1992) Relationship between wind speed and gas exchange over the ocean. J Geophys Res Oceans (1978–2012) 97(C5):7373–7382

    Article  Google Scholar 

  • Wanninkhof R, Ledwell JR, Broecker WS, Hamilton M (1987) Gas exchange on Mono lake and Crowley lake, California. J Geophys Res Oceans 92(C13):14567–14580

    Article  Google Scholar 

  • Wanninkhof R, Asher WE, Ho DT, Sweeney C, McGillis WR (2009) Advances in quantifying air-sea gas exchange and environmental forcing*. Marine Science, vol 1

  • Weiss R (1970) The solubility of nitrogen, oxygen and argon in water and seawater. In: Proceedings Deep Sea Research and Oceanographic Abstracts1970, Vol 17, Elsevier, p. 721–735

  • Weiss RF (1974) Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar Chem 2(3):203–215

    Article  Google Scholar 

  • Zappa CJ, McGillis WR, Raymond PA, Edson JB, Hintsa EJ, Zemmelink HJ, Dacey JW, Ho DT (2007) Environmental turbulent mixing controls on air‐water gas exchange in marine and aquatic systems. Geophys Res Lett 34(10)

  • Zeng F-W, Masiello CA (2010) Sources of CO2 evasion from two subtropical rivers in North America. Biogeochemistry 100(1–3):211–225

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol M. Wicks.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maas, B.J., Wicks, C.M. CO2 Outgassing from Spring Waters. Aquat Geochem 23, 53–60 (2017). https://doi.org/10.1007/s10498-016-9302-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10498-016-9302-6

Keywords

Navigation